Green Chemistry is proud to present the Green Chemistry Emerging Investigators Series, showcasing work being conducted by Emerging Investigators. This collection aims to highlight the excellent research being carried out by researchers in the early stages of their independent career from across the breadth of green chemistry. For more information about this series, click here
Among the contributions to this series is a Paper entitled Ultrafast, in situ transformation of a protective layer on lithium-rich manganese-based layered oxides for high-performance Li-ion batteries (DOI: 10.1039/D4GC02349H).
Read our interview with the corresponding author Prof. Jiayu Wan below.
How would you set this article in a wider context?
The rapidly increasing demand for electric vehicles and renewable energy storage underscores the need for high-energy-density, cost-effective lithium-ion batteries to enable sustainable transportation and grid-scale storage. This study addresses a key obstacle to the commercialization of lithium-rich manganese-based cathodes: their inherent surface instability. By offering a scalable and environmentally friendly manufacturing strategy, our work helps bridge the gap between laboratory research and practical commercial deployment.
What is the motivation behind this work?
This work was motivated by the limitations of existing surface modification approaches for lithium-rich cathodes, which are typically time-intensive, environmentally problematic, and difficult to scale. We recognized the potential of ultrafast high-temperature heating to achieve, within seconds, structural transformations that conventionally require hours. Importantly, this strategy eliminates the need for toxic reducing agents and specialized sealed reactors.
What aspects of this work are you most excited about at the moment, and what do you find most challenging about it?
I am particularly excited by the practical implications of achieving complete surface modification in just 8 seconds, which opens realistic pathways toward roll-to-roll manufacturing and commercial adoption. The primary challenge was the precise control of heating parameters to induce the desired surface spinel phase and oxygen vacancies without disrupting the internal layered structure. Addressing this challenge required extensive optimization and comprehensive characterization.
What is the next step? What work is planned?
We are currently scaling up this technology to pilot-scale production and evaluating its applicability across cathode materials with varying compositions. In parallel, we are investigating the fundamental mechanisms underlying rapid phase transformations during ultrafast heating to further improve process control and optimization. We are also exploring the integration of this approach to accelerate the discover of energy materials and beyond.
Please describe your journey to becoming an independent researcher
My research career began with a strong interest in energy storage science during my doctoral studies with Prof. Liangbing Hu at the University of Maryland, College Park. I subsequently conducted postdoctoral research at Stanford University under the guidance of Professors Yi Cui and Zhenan Bao, where I gained extensive experience in advanced materials characterization and device fabrication. After joining the Global Institute of Future Technology at Shanghai Jiao Tong University, I established an independent research program focused on innovative battery technologies and the application of artificial intelligence in energy storage.
Can you share one piece of career-related advice or wisdom with other early career scientists?
Do not hesitate to challenge established approaches, as many impactful innovations arise from questioning conventional practices. Open to adjacent disciplines and emerging technologies, as interdisciplinary perspectives often lead to breakthrough solutions. In addition, consider potential pathways to commercialization early in the research process, rather than treating them as an afterthought.
Why did you choose to publish in Green Chemistry?
Green Chemistry was a natural choice because this work closely aligns with the journal’s mission to promote sustainable chemical processes. Our ultrafast heating strategy eliminates toxic gases, reduces energy consumption, and minimizes environmental impact, embodying the core principles of green chemistry. Furthermore, the journal’s strong standing within the materials and energy communities ensures that our work reaches a highly relevant academic and industrial audience.
Meet the author
![]() |
Jiayu Wan is an Associate Professor at the Global Institute of Future Technology, Shanghai Jiao Tong University. He did postdoctoral research at Stanford University with Professors Yi Cui and Zhenan Bao. He obtained his Ph.D. degree from the University of Maryland, College Park with Prof. Liangbing Hu. His research interests primarily focus on energy storage and AI, in which he has authored over 110 articles with citation over 16,000 times. In recognition of his outstanding work, Prof. Wan has been honored with a number of awards including the and “Clarivate Highly Cited Researchers” the “Dorothy M. and Earl S. Hoffman Award” by the American Vacuum Society. |






























