Over the past 25 years, Green Chemistry has provided a unique forum for the publication of innovative research on the development of alternative sustainable technologies, efficient utilisation of resources and the concomitant minimisation of waste. We are delighted to bring together a very special issue containing articles by members of the green chemistry community as well as past and present Green Chemistry Board members, to mark and celebrate our first 25 years.
Among the contributions to this themed collection is a Critical Review on the application of Deep Eutectic Solvents (DESs) in the materials preparation process, starting from their unique and significant properties, combined with specific examples to propose how to design solvent systems according to various demands and purposes (DOI: 10.1039/D4GC00136B). The combination of green chemistry principles with innovative material design is expected to reshape industry technologies in a sustainable, efficient, and cutting-edge manner. |
Read our interview with the corresponding authors
How would you set this article in a wider context?
This article not only provides a comprehensive summary of fundamental research but is also supported by practical case studies, offering convenience for chemists and material scientists in their research. Additionally, the economic feasibility and environmental impact have been evaluated, which may serve as a reference for policymakers.
What is the motivation behind this work?
The study of the properties of DESs has become quite mature, and therefore, their effective use has become a focal point. The heterogeneity of DESs is a characteristic of these solvents, but what is its relationship with morphology control? Why can DESs function not only as solvents but also as templates and reducing agents? These deeper questions have been explored, but systematic discussions and comparisons are lacking. We have bridged two aspects of this field: starting from the excellent solubility of DESs to the preparation of various functional materials.
What aspects of this work are you most excited about at the moment and what do you find most challenging about it?
Pairwise summarization of work presents challenges, for example, inserting-leaching, etching-coating, doping-compositing, bottom-up and top-down approaches. Additionally, summarizing the electrodeposition of pure metals and common alloys is also a complex task.
What is the next step? What work is planned?
Moving forward, our work will continue to focus on green chemistry research in the following areas:
a. Forestry Resource Chemistry: pretreatment and high-value conversion of biomass and platform compounds
b. Resource and Environmental Chemistry: separation and purification of greenhouse gases, VOCs, waste plastics, minerals, and electronic waste
Why did you choose to publish in Green Chemistry?
All along, Green Chemistry is one of the most influential journals in this field. Green synthesis, green manufacturing and green energy are all inseparable from the basic concept of green chemistry. We believe that this work will demonstrate its greatest impact here.
What do you think the Green Chemistry journal has done well in the past 25 years, and what do you think are the main challenges our community will face in the next 25 years?
From the proposal of the 12 principles of green chemistry to the establishment of the journal Green Chemistry, scientists have gradually built a solid foundation for their research efforts. We believe that over the past 25 years, Green Chemistry as a publication has consistently promoted the concept of a sustainable society and the continuous development of humanity. In the next 25 years, the key will be how to attract high-quality research for publication, especially given the intense competition already evident within the publishing industry. More importantly, it is crucial to gain insights into the chemical elements involved in green development, thereby guiding progress in related fields.
Meet the corresponding authors
Prof. Tiancheng Mu received his Ph.D. in physical chemistry from the Institute of Chemistry, the Chinese Academy of Sciences, in 2004. He worked in the Department of Industrial Chemistry, Oldenburg University, as a postdoc from 2005 to 2007. He is currently a full professor in the Department of Chemistry, Renmin University of China. He has authored over 200 peer-reviewed scientific publications and six book chapters. He currently serves as an Associate Editor for RSC Advances, and as an Advisory Board Member for CLEAN – Soil, Air, Water. He is vice-director of the Ionic Liquids Committee of the Chemical Industry and Engineering Society of China. | |
Prof. Zhimin Xue received her Ph.D. degree from Renmin University of China in 2014. From 2018 to 2019, she was a visiting associate professor at the University of Tennessee, Knoxville. She is currently a professor at Beijing Forestry University. Her research interests cover the treatment and conversion of biomass, design, and applications of green solvents. Furthermore, she was awarded the Prize of Liangxi Forestry Science and Technology Award and the Science and Technology Award of the China Association for Instrumental Analysis. She was selected for the National High-level Talent Special Support Plan in 2021. |