Archive for November, 2024

Green Chemistry 25th Anniversary Collection: Solvent effects on carbohydrate transformation: insights into chemical pathway modulation

Over the past 25 years, Green Chemistry has provided a unique forum for the publication of innovative research on the development of alternative sustainable technologies, efficient utilisation of resources and the concomitant minimisation of waste. We are delighted to bring together a very special issue containing articles by members of the green chemistry community as well as past and present Green Chemistry Board members, to mark and celebrate our first 25 years.

Among the contributions to this themed collection is a Critical Review that summarizes the primary types of carbohydrate chemical transformation and commonly used solvent systems, providing an overview of solvent effects in these reactions and an insight into solvent effects from a microscopic perspective (DOI: 10.1039/D3GC04901A)

The review also provides relevant insights into the current status and challenges of solvent engineering, contributing to the solvent construction of carbohydrate reaction systems.

Read our interview with Haipeng Yu, the corresponding author here:

How would you set this article in a wider context?

The development of biomass resources is progressively moving towards refinement for higher-value benefits. Carbohydrates are an important component of biomass resources, and the chemicals obtained from their chemical derivatization are key intermediates in the production of biofuels, bioplastics, pharmaceuticals and fine chemicals, which makes carbohydrate resources a favourable alternative to traditional fossil energy sources. This article provides relevant insights into how solvent effects modulate carbohydrate reactions and also offers key information to optimize the reactions and improve their sustainability and environmental friendliness. The modulation of chemical pathways by solvents is a pervasive application. This article not only advances the understanding of biomass-derived chemical production, but also contributes to broader fields such as organic synthesis, materials science, industrial process design and green chemistry. It is hoped that this article will resonate across disciplines and provide a reference for more sustainable, efficient and targeted chemical processes.

What is the motivation behind this work?

We hope that this work will inspire future rationalized solvent design for specific chemical reactions. By understanding the mechanisms by which solvents regulate carbohydrate conversion pathways, researchers can develop novel and practical solvent systems that will improve the reaction efficiency and sustainability of a range of chemical processes.

What aspects of this work are you most excited about at the moment and what do you find most challenging about it?

The most interesting and challenging part of this work is the exploration and demonstration of the interaction between the solvent and other substances in the reaction system. The influence of solvent regulation on experimental results can be jointly supported through experimental control and microscopic simulation.

What is the next step? What work is planned?

In the next step, we plan to utilize solvent effects to develop related fine chemicals based on the sugar platform.

Please describe your journey to becoming part of the Green Chemistry community.

My journey began in my graduate studies when I recognized the environmental impact of traditional chemical processes, and I was inspired by sustainable chemistry to delve deeper into biomass conversion. I have been working on projects with my teachers and fellow students on green catalysts, synthetic routes, and bio-based materials. In the process I have come to understand the Green Chemistry community and become a part of it. In the future, I will take green chemistry as my purpose and continue to focus on the development of sustainable biomass conversion and utilization.

Why did you choose to publish in Green Chemistry?

I chose to publish in Green Chemistry because it aligns with the commitment to advancing sustainable and environmentally friendly chemical processes. The journal is a leading platform for cutting-edge research that promotes the principles of green chemistry. By publishing in Green Chemistry, I have the opportunity to contribute to a global community of scientists who are focused on developing innovative, sustainable solutions that address environmental challenges.

What do you think the Green Chemistry journal has done well in the past 25 years, and what do you think are the main challenges our community will face in the next 25 years?

Over the past 25 years, Green Chemistry has played a pivotal role in advancing sustainable science by providing a respected platform for researchers to share groundbreaking work on environmentally friendly chemical processes. The journal has successfully promoted the 12 Principles of Green Chemistry, helping shift industry and academic focus toward designing safer chemicals, using renewable resources, and minimizing waste. It has also facilitated collaboration between chemists, engineers, and policy-makers, driving practical applications of green technologies in industries like pharmaceuticals, energy, and materials science.

However, as we look ahead to the next 25 years, scaling sustainable technologies for widespread industrial adoption remains a major hurdle, as many green alternatives still struggle to compete economically with conventional processes. The journal may need to focus more on scaling up the practicality and economics of green chemistry processes. Additionally, as global environmental policies and regulations evolve, the journal may need to adjust its focus and content to remain relevant and impactful, including a greater emphasis on topics such as chemical recycling, renewable resource, and carbon footprint reduction.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Green Chemistry 25th Anniversary Collection: Deep eutectic solvents as green solvents for materials preparation

Over the past 25 years, Green Chemistry has provided a unique forum for the publication of innovative research on the development of alternative sustainable technologies, efficient utilisation of resources and the concomitant minimisation of waste. We are delighted to bring together a very special issue containing articles by members of the green chemistry community as well as past and present Green Chemistry Board members, to mark and celebrate our first 25 years.

Among the contributions to this themed collection is a Critical Review on the application of Deep Eutectic Solvents (DESs) in the materials preparation process, starting from their unique and significant properties, combined with specific examples to propose how to design solvent systems according to various demands and purposes (DOI: 10.1039/D4GC00136B). The combination of green chemistry principles with innovative material design is expected to reshape industry technologies in a sustainable, efficient, and cutting-edge manner.

Read our interview with the corresponding authors

How would you set this article in a wider context?

This article not only provides a comprehensive summary of fundamental research but is also supported by practical case studies, offering convenience for chemists and material scientists in their research. Additionally, the economic feasibility and environmental impact have been evaluated, which may serve as a reference for policymakers.

What is the motivation behind this work?

The study of the properties of DESs has become quite mature, and therefore, their effective use has become a focal point. The heterogeneity of DESs is a characteristic of these solvents, but what is its relationship with morphology control? Why can DESs function not only as solvents but also as templates and reducing agents? These deeper questions have been explored, but systematic discussions and comparisons are lacking. We have bridged two aspects of this field: starting from the excellent solubility of DESs to the preparation of various functional materials.

What aspects of this work are you most excited about at the moment and what do you find most challenging about it?

Pairwise summarization of work presents challenges, for example, inserting-leaching, etching-coating, doping-compositing, bottom-up and top-down approaches. Additionally, summarizing the electrodeposition of pure metals and common alloys is also a complex task.

What is the next step? What work is planned?

Moving forward, our work will continue to focus on green chemistry research in the following areas:
a. Forestry Resource Chemistry: pretreatment and high-value conversion of biomass and platform compounds
b. Resource and Environmental Chemistry: separation and purification of greenhouse gases, VOCs, waste plastics, minerals, and electronic waste

Why did you choose to publish in Green Chemistry?

All along, Green Chemistry is one of the most influential journals in this field. Green synthesis, green manufacturing and green energy are all inseparable from the basic concept of green chemistry. We believe that this work will demonstrate its greatest impact here.

What do you think the Green Chemistry journal has done well in the past 25 years, and what do you think are the main challenges our community will face in the next 25 years?

From the proposal of the 12 principles of green chemistry to the establishment of the journal Green Chemistry, scientists have gradually built a solid foundation for their research efforts. We believe that over the past 25 years, Green Chemistry as a publication has consistently promoted the concept of a sustainable society and the continuous development of humanity. In the next 25 years, the key will be how to attract high-quality research for publication, especially given the intense competition already evident within the publishing industry. More importantly, it is crucial to gain insights into the chemical elements involved in green development, thereby guiding progress in related fields.

Meet the corresponding authors

Prof. Tiancheng Mu received his Ph.D. in physical chemistry from the Institute of Chemistry, the Chinese Academy of Sciences, in 2004. He worked in the Department of Industrial Chemistry, Oldenburg University, as a postdoc from 2005 to 2007. He is currently a full professor in the Department of Chemistry, Renmin University of China. He has authored over 200 peer-reviewed scientific publications and six book chapters. He currently serves as an Associate Editor for RSC Advances, and as an Advisory Board Member for CLEAN – Soil, Air, Water. He is vice-director of the Ionic Liquids Committee of the Chemical Industry and Engineering Society of China.
Prof. Zhimin Xue received her Ph.D. degree from Renmin University of China in 2014. From 2018 to 2019, she was a visiting associate professor at the University of Tennessee, Knoxville. She is currently a professor at Beijing Forestry University. Her research interests cover the treatment and conversion of biomass, design, and applications of green solvents. Furthermore, she was awarded the Prize of Liangxi Forestry Science and Technology Award and the Science and Technology Award of the China Association for Instrumental Analysis. She was selected for the National High-level Talent Special Support Plan in 2021.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Green Chemistry 25th Anniversary Collection: The need to integrate mass- and energy-based metrics with life cycle impacts for sustainable chemicals manufacture

Over the past 25 years, Green Chemistry has provided a unique forum for the publication of innovative research on the development of alternative sustainable technologies, efficient utilisation of resources and the concomitant minimisation of waste. We are delighted to bring together a very special issue containing articles by members of the green chemistry community as well as past and present Green Chemistry Board members, to mark and celebrate our first 25 years.

Among the contributions to this themed collection is a Paper on quantifying  the level of correlation and linkages between five mass- and energy-based metrics and 16 LCA indicator scores by leveraging data for over 700 chemical manufacturing processes (DOI: 10.1039/D4GC00394B)

Synthetic chemicals are essential to everyday life, supporting everything from food security and health care to electronics and clothing. Scientists and engineers are constantly searching for greener production routes, but designing them requires methods to quantify their environmental impact. This article evaluates different metrics of varying complexity, identifying their pros and cons.

Read our interview with Javier Pérez-Ramírez and Gonzalo Guillén-Gosálbez

How would you set this article in a wider context?

Global chemical demand is projected to grow by 40% this decade, while the chemical industry faces mounting pressure to reduce its substantial environmental footprint. We highlight the critical role of metrics in assessing environmental impacts and emphasise the importance of a holistic approach to guide prioritisation and more informed decision-making.

What is the motivation behind this work?

Overall, our goal is to promote the broad adoption of quantitative metrics in research. The global aspiration of the community to make the world a better place through chemistry often relies on narrow or simplified indicators, leading to unclear environmental benefits. We addressed this by using more comprehensive and standardised approaches across a wide range of key chemical processes to understand the differences in the information they provide.

What aspects of this work are you most excited about at the moment and what do you find most challenging about it?

We’re particularly excited about how comprehensive sustainability metrics like life cycle assessments (LCA) can rank chemical processes based on diverse environmental impacts, going beyond the CO2 footprint. Our results indicate that different methods present distinct advantages and trade-offs across various environmental criteria. Current challenges include the limited availability and uncertainty of openly accessible data, as well as the need to bring the experimental and systems engineering communities closer in the coming years.

What is the next step? What work is planned?

We conclude from our results that increasing the use of comprehensive LCA in early research stages is key. To address this, we aim to make these environmental analyses more accessible through user-friendly tools. Additionally, we will focus on data standardisation and robust methods for managing data uncertainty, as well as proposing effective schemes for ranking chemicals based on distinct impacts, which remains challenging.

Please describe your journey to becoming part of the Green Chemistry community

We view our journey into the Green Chemistry community as a natural progression of our commitment to making a positive societal impact. Chemistry will play a pivotal role in implementing the sustainable development goals and combating climate change, and we believe that embracing the guiding principles of Green Chemistry is essential for this mission within an interdisciplinary approach.

Why did you choose to publish in Green Chemistry?

We chose Green Chemistry for its unique focus on alternative green technologies and sustained leadership in the field. The themed collection ‘Measuring Green Chemistry: Methods, Models, and Metrics‘ aligns with our focus on quantifying environmental impacts, making it the ideal platform for our study.

What do you think the Green Chemistry journal has done well in the past 25 years, and what do you think are the main challenges our community will face in the next 25 years?

Green Chemistry has been instrumental in uniting a diverse community under a shared philosophy grounded in the Green Chemistry principles and has successfully adapted to the evolving landscape of sustainable chemistry. As mentioned above, one of the major challenges will be achieving the application of standardised metrics in both academic and industrial arenas, for which different stakeholders must collaborate.

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Green Chemistry 25th Anniversary Collection: A robust heterogeneous chiral phosphoric acid enables multi decagram scale production of optically active N,S-ketals

Over the past 25 years, Green Chemistry has provided a unique forum for the publication of innovative research on the development of alternative sustainable technologies, efficient utilisation of resources and the concomitant minimisation of waste. We are delighted to bring together as very special issue containing articles by members of the green chemistry community as well as past and present Green Chemistry Board members, to mark and celebrate our first 25 years.

Among the contributions to this themed collection is a Paper on the application of a highly recyclable heterogeneous catalyst to the multi-decagram synthesis of enantiomerically enriched molecules in continuous-flow using a 2 mL reactor. The combination of this catalyst with a new reactor design increased the productivity from milligrams to up to 20 g scale in a few hours while reducing the overall environmental impact of the reaction (DOI: 10.1039/D4GC00019F)

Organocatalysis has become one of the pillars of asymmetric catalysis along with metal and enzyme-catalyzed reactions. Its potential was recognized in 2019 by the IUPAC, as a part of the top 10 emerging technologies in chemistry, and by the Nobel Prize awarded to Benjamin List and David MacMillan in 2021.However, these reactions are often too inefficient due to the high catalyst cost and scalability issues, leading to limited applicability in the industry. In this context, developing heterogeneous catalysts can simplify the recycling process, making catalytic processes more efficient and contributing to minimizing the overall cost and environmental impact of the reaction.

Read our interview with Aitor Maestro and C. Oliver Kappe

What is the motivation behind this work?

Although the use of heterogeneous catalysts and continuous flow technology in asymmetric catalysis is not new, the productivity of known processes is often rather limited. Developing new and reliable enantioselective processes for reproducing batch reactions on a large scale requires a combination of chemical and technical solutions. In this article, we wanted to illustrate the potential of combining these techniques to achieve higher productivity and set up a precedent for future developments in the field.

What aspects of this work are you most excited about at the moment and what do you find most challenging about it?

One of the most exciting results of this project was the high robustness of the heterogeneous catalyst. While similar homogeneous reactions often require 2-10 mol% of the catalyst, we managed to decrease it up to 0.1%. Moreover, the analysis of the catalyst after the reaction did not show any visible physical or chemical degradation, indicating it could be used for much longer.

One of the biggest challenges is the development of new heterogeneous catalysts that efficiently mimic the behaviour of their homogeneous counterparts. While solid supports facilitate the recycling process, they can also affect the reactivity.

What is the next step? What work is planned?

We are willing to further explore the potential of highly active heterogeneous chiral catalysts for other applications in the future. We want to apply them to the synthesis of key chiral building blocks and active pharmaceutical ingredients.

Please describe your journey to becoming part of the Green Chemistry community

Integrating technical solutions with intricate catalytic reactions helps reduce the overall waste, create more sustainable chemical processes, and enhance reaction efficiency. Therefore, focusing on the intersection of catalysis and technology aligns perfectly with the principles of green chemistry.

Why did you choose to publish in Green Chemistry?

This is one of the leading journals in the field of green chemistry research. We thought our work involving catalyst recyclability studies and waste reduction of the reported enantioselective reaction was a good fit for the scope of the journal.

What do you think the Green Chemistry journal has done well in the past 25 years, and what do you think are the main challenges our community will face in the next 25 years?

One of the biggest challenges for the journal is being focused on a constantly changing field. Many aspects of green chemistry are often directed by global trends or new legal regulations. Some current challenges that will probably get more attention in the coming years are obtaining raw chemicals from renewable sources such as CO2 or the development of economically viable catalytic processes.

Meet the corresponding authors

Aitor Maestro obtained his PhD (2019) from the University of the Basque Country, working on asymmetric organocatalysis. After two postdoctoral stays (University of Groningen, and University of St. Andrews), in 2022, he obtained a Postdoctoral Fellowship from the Basque Government, allowing him to spend two years at the University of Graz working on asymmetric catalysis in continuous flow before moving back to the University of the Basque Country, where he is currently working on independent projects related to the development and applications of recyclable chiral catalysts.
Oliver Kappe received his diploma (1989) and his doctoral (1992) degrees in organic chemistry from the University of Graz and after two postdoctoral stays (University of Queensland and Emory University) returned to Graz in 1996 to start his indepenent acacdemic career and was appointed Full Professor in 2011. For the past decade the focus of his research has been directed towards flow chemistry/microreaction technology, encompassing a wide variety of synthetic transformations and experimental techniques.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)