Burning biomass for heat and power could produce as much as 2000 TWh by 2020, which would produce 4–15.6 million tonnes of waste ash, per year, in Europe alone. To address the problem of what to do with all this waste, scientists in the UK have developed a method to convert this ash into mesoporous silica.
Although some of the waste ash produced from the combustion of biomass is currently used in construction, most of it ends up in landfill. Therefore, extracting alkali silicates, which can be used in cement, detergents, catalysts and catalyst supports, is one way of reusing the potentially huge quantities of ash due to be produced in the future.
The team, led by Duncan Maquarrie at the University of York, developed an efficient route for extracting the silicates by forming alkali silicate solutions. The silicate solutions were converted into the porous silica, MCM-41, a useful catalyst and molecular sieve.
Read what Duncan Macquarrie has to say about the research in Chemistry World.
Read the original research published in Green Chemistry:
Alkali silicates and structured mesoporous silicas from biomass power station wastes: the emergence of bio-MCMs, J. R. Dodson, E. C. Cooper, A. J. Hunt, A. Matharu, J. Cole, A. Minihan, J. H. Clark and D. J. Macquarrie, Green Chem., 2013, DOI: 10.1039/C3GC40324F