Archive for the ‘News’ Category

Nanoplasters get cells into sticky situation

Nanoparticles that glue cells together could aid wound healing or stop tumour metastasis

tumour cells concept

Source: © Shutterstock

An international team of researchers has found that sticky nanoparticles can aggregate cells lacking the naturally occurring proteins that normally hold them together. These polystyrene nanostickers could help wound healing or stop tumour cells from spreading through the body.

To read the full article visit Chemistry World.

Benjamin Brunel, Grégory Beaune, Usharani Nagarajan, Sylvie Dufour, Françoise Brochard-Wyart and Françoise M. Winnik
Soft Matter, 2016, Advance Article
DOI: 10.1039/C6SM01450J, Communication
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Top 10 Reviewers for Soft Matter

In celebration of Peer Review Week, with the theme of Recognition for Review, we would like to highlight the top 10 reviewers for Soft Matter in 2016, as selected by the editor for their significant contribution to the journal.

Top 10 Reviewers for Soft Matter:
- Professor Jan Dhont – ICS-3, Germany
- Dr Kaigiang Liu – Shaanxi Normal University, China
- Dr Wei Hong – Iowa State University, USA
- Professor Jan Vermant – ETH Zurich, Switzerland
- Dr Yilin Wang – Chinese Academy of Sciences, Beijing, China
- Dr Giorgio Cinacchi – Universidad Autonoma de Madrid, Spain
- Dr Laurent Courbin – CNRS, France
- Dr Chinedum Osuji – Yale University, USA
- Dr Kevin Cavicchi – The University of Akron, USA
- Dr Alejandro Rey – McGill University, Canada

We would like to say a massive thank you to these reviewers as well as the Soft Matter board and all of the soft matter community for their continued support of the journal, as authors, reviewers and readers.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Soft interfacial materials: from fundamentals to formulation

Cover image - Courtesy of N. J. Brooks.

Royal Society Publishing has recently published a special issue of Philosophical Transactions A entitled Soft interfacial materials: from fundamentals to formulation.

The collection was organised and edited by Michael Cates, John Seddon, Nicholas Brooks, Paul Clegg and Alex Lips. who wrote an Introduction piece.

This themed issue reports papers presented at a Discussion Meeting intended not only to address the fundamental science, focusing on generic design principles for self-organisation and interfacial structure, but also to explore the resulting prospects for ‘informed formulation’ of new and improved industrial products.


This issue is available to read online, including the Introduction which is free to access:

Introduction:

Soft interfacial materials: from fundamentals to formulation
N. J. Brooks, M. E. Cates, P. S. Clegg, A. Lips, W. C. K. Poon, J. M. Seddon


Research articles:

Non-ionic surfactant phase diagram prediction by recursive partitioning
Gordon Bell

- The physics of stratum corneum lipid membranes
Chinmay Das, Peter D. Olmsted

- Lipid self-assembled structures for reactivity control in food
L. Sagalowicz, C. Moccand, T. Davidek, R. Ghanbari, I. Martiel, R. Negrini, R. Mezzenga, M. E. Leser, I. Blank, M. Michel

Exploring the in meso crystallization mechanism by characterizing the lipid mesophase microenvironment during the growth of single transmembrane α-helical peptide crystals
Leonie van ‘t Hag, Konstantin Knoblich, Shane A. Seabrook, Nigel M. Kirby, Stephen T. Mudie, Deborah Lau, Xu Li, Sally L. Gras, Xavier Mulet, Matthew E. Call, Melissa J. Call, Calum J. Drummond, Charlotte E. Conn

- Determining drug release rates of hydrophobic compounds from nanocarriers
Suzanne M. D’Addio, Abdallah A. Bukari, Mohammed Dawoud, Heike Bunjes, Carlos Rinaldi, Robert K. Prud’homme

- Arrested coalescence of viscoelastic droplets: polydisperse doublets
Prerna Dahiya, Marco Caggioni, Patrick T. Spicer

- A phenomenological description of BslA assemblies across multiple length scales
Ryan J. Morris, Keith M. Bromley, Nicola Stanley-Wall, Cait E. MacPhee

- Some modification of cellulose nanocrystals for functional Pickering emulsions
Dorra Saidane, Emilie Perrin, Fanch Cherhal, Florian Guellec, Isabelle Capron

- Manufacture of poly(methyl methacrylate) microspheres using membrane emulsification
Jaiyana Bux, Mohamed S. Manga, Timothy N. Hunter, Simon Biggs


Review articles:

- Cationic liposome–nucleic acid nanoparticle assemblies with applications in gene delivery and gene silencing
Ramsey N. Majzoub, Kai K. Ewert, Cyrus R. Safinya

- Physical basis of some membrane shaping mechanisms
Mijo Simunovic, Coline Prévost, Andrew Callan-Jones, Patricia Bassereau

- Soft electrostatic repulsion in particle monolayers at liquid interfaces: surface pressure and effect of aggregation
Peter A. Kralchevsky, Krassimir D. Danov, Plamen V. Petkov

- Curvature-driven assembly in soft matter
Iris B. Liu, Nima Sharifi-Mood, Kathleen J. Stebe


Opinion piece:

- Self-assembly of small peptide amphiphiles, the structures formed and their applications. (A foods and home and personal care perspective)
W. J. Frith


We hope you enjoy reading this collection.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Glass transition in ant traffic jams

Inspired by the fluid-like motion of flocks of birds, researchers in the US have used techniques from soft matter physics to study the way that fire ants move.

At high density collective ant flow can be described by the physics of glass-forming soft materials © Shutterstock

Collective motion is ubiquitous in nature. Fire ants in particular provide a fascinating case study due to the confinement enforced by the foraging tunnels in which they move. A key factor in the motion of fire ants, and other eusocial insects, is the requirement to stop and communicate with each other, leading to traffic jams and blockages along the 50m long underground superhighways in which they travel.

To read the full article visit Chemistry World.

Glass-like dynamics in confined and congested ant traffic
Nick Gravish, Gregory Gold, Andrew Zangwill, Michael A.D. Goodisman and Daniel I Goldman 
Soft Matter, 2015, Accepted Manuscript
DOI: 10.1039/C5SM00693G, Paper

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Caddisfly silk gets shocked into self-recovery

The tough, extendable, energy-dissipating properties of the casemaker caddisfly’s adhesive silk are down to a self-recovering network of calcium crosslinks, new research shows. US researchers behind the discovery hope to harness these findings to design new synthetic bioadhesives that can adhere to wet tissues.

Images (l and m) of silk holding together glass beads in the same way that silk and stones combine to make the body armour (r)

To read the full article visit Chemistry World.

Self-recovering caddisfly silk: energy dissipating, Ca2+-dependent, double dynamic network fibers
Nicholas N. Ashton and Russell J. Stewart 
Soft Matter, 2015, Advance Article
DOI: 10.1039/C4SM02435D, Paper

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Soft Matter Welcomes New Associate Editor Dimitris Vlassopoulos

We are delighted to welcome our newest Soft Matter Associate Editor: Professor Dimitris Vlassopoulos (University of Crete, Greece).

Dimitris is a leading expert in polymer rheology and has published over 160 papers. His research focuses on soft matter physics and engineering problems with specific interests in molecular rheology and rheo-physics in the bulk and at liquid interfaces, architecturally complex polymers, and soft colloids.

Dimitris also brings a wealth of previous editorial experience to the Soft Matter team; we are delighted to have him board.

To find out more about Dimitris’ research, take a look at this recent paper:

Molecular rheology of branched polymers: decoding and exploring the role of architectural dispersity through a synergy of anionic synthesis, interaction chromatography, rheometry and modeling
Evelyn van Ruymbeke, Hyojoon Lee, Taihyun Chang, Anastasia Nikopoulou, Nikos Hadjichristidis, Frank Snijkers, Dimitris Vlassopoulos

And a Soft Matter issue dedicated to the theme of ‘Bridging the gap between soft and hard colloids’ of which Dimtris was a Guest Editor along with Professor Michel Cloitre

As a Soft Matter Associate Editor, Dimitris will be handling submissions to the journal. Why not submit your next paper to his Editorial Office?
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Making light of food allergies

Researchers in Spain are taking steps towards ‘allergy-free’ food, by treating allergy-inducing proteins with a pulsed light treatment that makes them easier to digest.

 The scientists at the University of Granada and the AZTI-Tecnalia Food Research Institute studied the protein β-lactoglobulin, which acts as an excellent emulsifier in milk and other food products but has a compact structure that defies easy digestion. This lack of digestibility is linked to allergenicity, explains team member Julia Maldonado-Valderrama: ‘If the protein is not completely digested, the body reacts as if it is an allergen, which can trigger an allergic reaction.’ Pre-treatment could break down the protein structure before eating; however, it’s a balancing act. ‘If you break the protein down too much in order to facilitate digestion, they lose their functionality and can’t be used to make foams and emulsions in food products,’ says Maldonado-Valderrama.

To read the full article please visit Chemistry World.

Improved digestibility of β-lactoglobulin by pulsed light processing: dilatational and shear study
Teresa del Castillo-Santaella, Esther Sanmartín-Sierra, Miguel Cabrerizo-Vílchez, J Arboleya and Julia Maldonado-Valderrama
Soft Matter, 2014
DOI: 10.1039/C4SM01667J, Paper

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Colloidal caterpillars get a wiggle on

Researchers have devised a new method to transport micro cargo – by attaching it to chains of colloidal particles that wiggle their way through liquid crystals.

The research team, led by Hiroshi Orihara from Hokkaido University, Japan, and Christian Bahr from the Max Planck Institute for Dynamics and Self-Organization, Germany, created colloidal ‘caterpillars’ from surface-modified silica particles which self-assemble into chains when placed in a liquid crystal medium. To make them move, the team exploit an effect called electrohydrodynamic convection (EHC), where the application of an electric field creates a convective pattern of parallel rolls within the medium. The caterpillars travel in an undulating motion across successive rolls, driven by a combination of hydrodynamic flow and electric field effects. Excitingly, the caterpillars can be attached to and used to transport larger particles and liquid droplets, which are in themselves too big to be moved by the EHC rolls.

To read the full article visit Chemistry World.

Colloidal Caterpillars for Cargo Transportation
Yuji Sasaki, Yoshinori Takikawa, VSR Jampani, Hikaru Hoshikawa, Takafumi Seto, Christian Bahr, Stephan Herminghaus, Yoshiki Hidaka and Hiroshi Orihara 
Soft Matter, 2014, Accepted Manuscript
DOI: 10.1039/C4SM01354A, Paper

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Soft matter goes digital

Already used in everything from paints to optical materials, colloids have found an entirely new application: as computing elements capable of high density information storage.

US collaborators Sharon Glotzer from University of Michigan and David Pine from New York University have designed a system of reconfigurable colloidal clusters which show potential for performing computational functions in unconventional environments. The team’s ‘digital colloids’ are based on specially designed dimpled particles, which, through entropic interactions, can be made to assemble onto a central sphere and explore various configurations on the sphere’s surface.

To read the full article please visit Chemistry World.

Carolyn L. Phillips, Eric Jankowski, Bhaskar Jyoti Krishnatreya, Kazem V. Edmond, Stefano Sacanna, David G. Grier, David J. Pine and Sharon C. Glotzer
Soft Matter, 2014, Advance Article DOI: 10.1039/C4SM00796D
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Enrico Fermi Summer School on Soft Matter Self-Assembly

Making plans for next summer?

The International School of Physics Enrico Fermi is holding a Summer School on Soft Matter Self-Assembly on June 28-July 7 2015 in Varenna, Italy.  

The 10-day school will be a great opportunity for PhD students and postdocs to engage with the some of the most exciting and current topics in the physics of colloids, through a series of mini-courses and seminars hosted by leading figures in the field.

Topics include:

  • Colloids with directional bonding (David Pine, New York University, US)
  • Pathways to self-organization (Christoph Dellago, University of Vienna, Austria)
  • Particles at interfaces (Kathleen Stebe, University of Pennsylvania, US)
  • Self-assembly hydrodynamics (Julia Yeomans, Oxford University, UK)
  • Driven self-assembly (Peter Schurtenberger, Lund University, Sweden )
  • Polymer structure and dynamics (Michael Rubinstein, University of North Carolina, US)
  • Liquid-crystal colloid dispersions (Randall Kamien, University of Pennsylvania, US)
  • DNA-based self-assembly (Oleg Gang, Brookhaven National University, US)
  • Self-organizing nanosystems (Willem Kegel, Utrecht University, the Netherlands)

For more information, take a look at the website of the International School of Physics Enrico Fermi, or contact the summer school directors Christos Likos, University of Vienna, Francesco Sciortino, Sapienza Universita di Roma, or Primoz Ziherl, Jozef Stefan Institute.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)