Author Archive

Visual observation for diagnosis of halitosis and screening of periodontitis based on a structural color hydrogel

Currently, the staging and grading of periodontitis are the basis for effective treatment which relies on professional and complicated oral examinations. As such, there lacks an efficient strategy for the screening of periodontitis. Oral pathogens can produce volatile sulfur compounds (VSCs) which cause halitosis, and which can also act as biomarkers for periodontitis. High-sensitivity detection of exhaled VSCs is urgently desired for promoting the point-of-care testing (POCT) of halitosis and screening of periodontitis. However, current detection methods often require bulky and costly instruments, as well as professional training, making them impractical for widespread detection.

To promote the POCT of VSCs, Hu et al. recently reported a structural color hydrogel for naked-eye detection of oral pathogens, diagnosis of halitosis, and screening of periodontitis (Figure 1). They employed a disulfide-containing molecule N,N-bis(acryloyl)-(L)-cystine (BISS) as a VSC-responsive crosslinker within a polyacrylamide (PAAm) hydrogel network and introduced the hydrogel into a photonic crystal structure. The disulfide bonds in the hydrogel can be reduced to sulfhydryl groups by VSCs, leading to cleaved crosslinkers and thus a decreased crosslink density. As a result, the hydrogel swells, leading to a red shift of the Bragg diffraction wavelength, causing a corresponding change in the structural color of the photonic crystal. The structural color hydrogel is capable of linear detection of 0–1 ppm VSCs, which covers the typical concentration of VSCs exhaled by patients with periodontitis, and a limit of detection (LOD) of 61 ppb to H2S can be achieved. Via real-time and in-situ sensing of the VSCs produced by porphyromonas gingivalis, the proliferation process can be visually monitored, which shows consistent results with the commonly used turbidimetric method. On this basis, the structural color hydrogel is applied to detect exhaled VSCs of patients with halitosis, showing results consistent with the clinical diagnosis. By integrating hydrogels of various colors into a sensor array, the oral health conditions of patients with halitosis can be evaluated and distinguished, offering a risk assessment of periodontitis.

 

Figure 1: Schematic illustration of the structural color hydrogel for diagnosis of halitosis and screening of periodontitis. Exhaled VSCs reduce the disulfide bonds to sulfhydryl groups within the hydrogel network, leading to expansion and color shift of the hydrogel. A higher concentration of VSCs suggests severe halitosis and a higher risk of periodontitis. Reproduced from DOI: 10.1039/d3mh01563g with permission from the Royal Society of Chemistry.

In summary, compared with the state-of-the-art detection methods, the structural color hydrogel has the potential for employment in low-cost, high-sensitivity, and high-accuracy point-of-care diagnosis of halitosis and screening of periodontitis without bulky instruments and power sources. This opens a door to an auxiliary diagnosis of periodontitis and has great significance for stomatology.

To find out more, please read:

A structural color hydrogel for diagnosis of halitosis and screening of periodontitis
Chuanshun Hu, Jieyu Zhou, Jin Zhang, Yonghang Zhao, Chunyu Xie, Wei Yin, Jing Xie, Huiying Li, Xin Xu, Lei Zhao, Meng Qin and Jianshu Li
Mater. Horiz., 2024, Advance article, DOI: 10.1039/d3mh01563g

 


About the blogger


 

Jing Xie is currently an Associate Professor at Sichuan University and a member of the Materials Horizons Community Board. Dr. Xie focuses on the exploration and preparation of polymer materials and their composites, with a focus on the biological domain, particularly within the context of bone-related ailments, including osteoarthritis, bone defects, and others.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Exploiting bond exchange reaction to optimize mechanical properties of 3D printed composites

Additive manufacturing is a polymer processing method enabling the preparation of 3D architectures with a high level of design freedom. While some of the additive manufacturing technologies, such as fused deposition modeling (FDM) are commonly used at an industrial level for prototyping, there are still numerous challenges to tackle for achieving a 3D architecture that possesses state-of-the-art thermomechanical properties, compared to those obtained via conventional methods. Considering the sustainability aspect of the selected additive manufacturing method, including the management of the failed 3D parts, is also of utmost importance in the context of sustainable laboratories.

As recently reported by Jiang et al., there are additional challenges for the additive manufacturing of continuous fiber composites which are made of a carbon fiber that is surrounded by a polymer matrix. FDM is often used to prepare such samples, where the continuous carbon fiber and the thermoplastic filament are fed separately during the processing of the materials. While this strategy works to produce continuous fiber composites, the resulting mechanical properties are mostly dictated by those of the thermoplastic polymer. To optimize the mechanical properties of such samples, an interesting alternative strategy consists of using a thermoset polymer matrix processed via direct-ink writing (DIW). While some successes have been reported exploiting DIW, the rheological properties of the thermoset in the pre-printing stage needs to meet specific requirements to enable the extrusion of the formulation, including shear-thinning and thixotropy. The solidification kinetics of the thermoset formulation occurring upon exposure of the 3D printed formulation to heat is usually slow and leads to a uniform curing, but also leads to difficulties in obtaining a 3D printed architecture with a high level of post-treatment print fidelity. To circumvent this problem, UV curable resins, once again printed via direct-ink writing, can be used as a polymer matrix for the continuous fiber composite as their solidification kinetics are often faster than those of thermosets. While this process is efficient, the presence of the continuous fiber may impede the penetration of the irradiation, usually leading to a fast yet non-uniform curing.

To address the challenges involved in the preparation of continuous fiber composites linked to the DIW of either the thermoset or the UV curable resin, Jiang et al. designed a formulation capable of undergoing a two-stage curing process, therefore successfully combining the advantages of both UV curing (fast solidification) and heat-based curing (uniform curing). They combined the 2-hydroxy-3-phenoxypropyl acrylate monomer, the phenylbis (2,4,6-glycerolate diacrylate) photoinitiator, and a triazabicyclodecene as the bond exchange reaction catalyst. As illustrated in Figure 1, the first stage (UV irradiation) allows for the free-radical polymerization to occur while the second stage (heat) is used to increase the resulting material’s crosslinking density via the transesterification reactions occurring between the hydroxyl and the ester functional groups of the material.

Figure 1. a) Chemical structures composing the two-stage curable resin undergoing b) UV curing and c) heating illustrating the bond exchange reaction involved in the optimization of the thermomechanical properties of the 3D printed architectures. Reproduced from DOI: 10.1039/d3mh01304a with permission from the Royal Society of Chemistry.

This transesterification, also referred to as bond exchange reaction, is crucial to optimize the thermomechanical properties of the 3D printed continuous fiber composites, which results in high performance applications for these architectures. Jiang et al. reported not only a ~11-fold increase in the modulus of the two-stage cured samples compared to the UV cured only samples, but also a better adhesion (referred to as welding) between the layers deposited on top of one another. This enhanced adhesion is a consequence of the covalent bond created between the layers upon the heating step which is, once again, facilitated by the bond exchange reaction.

The capability of the 3D printed architectures to undergo bond exchange reaction also allows for the repairing and reshaping of the architectures. It was shown that the 3D printed architectures could be recycled via depolymerization in ethylene glycol at high temperature (160°C), which is an important asset for a thermoset based composite, especially in the context of sustainable materials and processing. This proof-of-concept has been extended to acrylate/epoxy-based commercial resins, opening the door to fundamental studies of the mechanisms of bond exchange reactions in similar resins where further understanding of the structure-processing-property relationships could be established to lead to the rational design of custom resins for the 3D printing of continuous fiber composites.

To find out more, please read:

3D Printing of continuous fiber composites using two-stage UV curable resin
Huan Jiang, Arif M. Abdullah, Yuchen Ding, Christopher Chung, Martin L. Dunn and Kai Yu
Mater. Horiz., 2023, 10, 5508-5520, DOI: 10.1039/D3MH01304A

 


About the blogger


 

Audrey Laventure is an assistant professor in the Department of Chemistry at the Université de Montréal (UdeM), QC, Canada, and a member of the Materials Horizons Community Board. Since 2021, she holds the Canada Research Chair in Functional Polymer Materials. Her expertise lies at the intersection of physical chemistry, polymer processing and advanced materials characterization. In 2023, Audrey was selected to lead the molecular materials axis of the new Institut Courtois at UdeM. Audrey was also part of the first Youth Council of the Chief Science Advisor of Canada (2020-2023) and the Science Meets Parliament 2023 cohort.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Revolutionary Room-Temperature F-Ion Batteries: Harnessing Sulfone Electrolytes and Anion Acceptor Additives

In the realm of large-scale energy storage, the quest for low-cost, high-energy battery technologies has spurred the emergence of various alternatives. Lithium batteries utilizing Co-free conversion-type cathodes, alongside multivalent cation, and halogen anion batteries, stand out among the contenders. Conversion-type cathodes like iron fluorides in lithium batteries offer cost efficiency, higher capacity, and higher energy density compared to cathodes containing expensive transition metals. However, the use of lithium metal anodes presents safety and cost challenges, inhibiting effective real-world battery performance. Similarly, while multivalent cation batteries, such as those based on Mg2+, boast abundant reserves, their strong coulombic interactions with host materials create challenges with charge carrier migration. To address these issues and develop batteries with favourable reaction kinetics and reversibility, the burgeoning field of halogen anion batteries, particularly fluoride ion batteries (FIBs), holds promise.

 

Fig. 1 Preparation and characterization of electrolytes. (a) Preparation process of the CTD3 electrolyte. (b) Illustration of adsorption of the TG molecule to F and its adsorption energy. (c) 1 H NMR spectra of TG, CTD1 and CTD3. (d) FT-IR spectrum of CTD3. Reproduced from DOI: 10.1039/D3MH01039B with permission from the Royal Society of Chemistry.

 

FIBs, leveraging the unique properties of fluorine as the lightest and most electronegative element among halogens, offer the highest theoretical energy density. Despite this potential, realizing practical applications has been hindered by the lack of suitable electrolytes with high ionic conductivity at room temperature. The insolubility of fluoride salts in aprotic solvents has been a primary challenge. While boron-based anion acceptors (AAs) aid in dissociating fluoride salts, their strong Lewis acidity impedes fluoride transport, leading to unsatisfactory electrolyte conductivity. Addressing this limitation, a novel AA with mild Lewis acidity has been developed, facilitating fluoride salt dissociation while avoiding strong AA-F bonding. This breakthrough enables prepared electrolytes to achieve high ionic conductivity, reaching up to 2.4 mS cm-1 at room temperature, enabling successful FIB operation with a reversible capacity of 126 mA h g-1 after 40 cycles.

Moreover, understanding the regulation effect of salt concentration on the cathode interface has unveiled insights into improving FIB performance, emphasizing the critical role of rational electrode-electrolyte interface design in future FIB development. FIBs hold significant promise owing to their potential for high energy density and favourable compatibility with high-voltage electrode materials. Notably, fluorine’s abundance—two orders of magnitude higher in global production than lithium—further accentuates their appeal. Conversion-type FIBs, with a theoretical energy density of 5000 W h L-1, exhibit substantial energy density even at leaner stack levels, offering a cost as low as $20 per kW h-1 according to techno-economic analysis. Despite these merits, the experimental realization of the remarkable energy density of FIB is hindered by the lack of well-tailored electrolytes with suitable ionic transport abilities and electrochemical stability.

Liquid electrolytes for FIBs have garnered interest due to their high room-temperature ionic conductivity and better wettability compared to solid-state electrolytes. However, challenges persist, mainly the insolubility of fluoride salts in regular organic aprotic solvents due to strong electrostatic interactions. To address this, efforts have been directed toward designing softer Lewis acidity AAs that facilitate fluoride salt dissolution without excessive solvation, crucial for practical liquid electrolytes. Innovations in this work have introduced a novel sulfone electrolyte based on a new molecular-type H-donor AA (6-thioguanine, TG) with moderate Lewis acidity. Demonstrated through various analyses, this electrolyte achieves impressive ionic conductivity at room temperature, enabling the reversible cycling of FIBs. The superior reversibility is attributed to the electrolyte’s high ionic conductivity, improved desolvation capability of fluoride ions, and a well-designed interface layer.

In summary, the pioneering advancements in electrolyte design for fluoride ion batteries set the stage for increasingly viable and effective energy storage solutions, offering improved reversibility and reliable performance at ambient temperatures.

To find out more, please read:

Room-temperature reversible F-ion batteries based on sulfone electrolytes with a mild anion acceptor additive
Yifan Yu, Meng Lei and Chilin Li
Mater. Horiz., 2023, Advance Article, DOI: 10.1039/D3MH01039B

 


About the blogger


 

Edison Huixiang Ang serves as an Assistant Professor at the National Institute of Education/Nanyang Technological University, Singapore, and a member of the Materials Horizons Community Board. Dr. Edison specializes in nanotechnology, particularly exploring 2D nanomaterials for applications in energy storage, membrane technology, catalysis, and sensors. Stay updated on his work by following him on X (formerly Twitter) @edisonangsg.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Enhancing photodynamic therapy (PDT) with a biocompatible pure organic nanocage

The advantages of minimal invasiveness, excellent biocompatibility, and high spatiotemporal control manners have enabled photodynamic therapy (PDT) to be utilized as a novel alternative to conventional cancer treatment approaches. PDT relies on photosensitizers (PSs) to photochemically react with the ground-state oxygen molecules (oxygen, 3O2) or small molecules, generating highly toxic reactive oxygen species (ROS) under light irradiation in situ, to further induce tumor cell apoptosis or necrosis, vascular damage or cancer-mediated immunity, for example.

Since the first discovery of PSs based on hematoporphyrin derivatives (HpD) in 1960, the porphyrin-based PSs and their PDT performance have been extensively explored. Currently, various porphyrin-based PSs with different structures such as verteporfin, porfimer sodium, temoporfin and photocarcinosin have been approved for clinical practice. Despite great progress in clinical practice, the ROS generation of these porphyrin-based PSs is still far from satisfactory. One of the main issues is their large planar and rigid structures, which tend to form tight aggregates with strong π…π interactions at high concentrations in aqueous solutions or at tumor tissues. Such π…π stacking will cause diminished fluorescence and compromised ROS, leading to low PDT efficacy.

To weaken π…π stacking of porphyrin-based PSs, boost the generation of ROS, and enhance the PDT efficacy, work by Zhu, Zhang et al recently reported a novel biocompatible pure organic porphyrin nanocage (Py-Cage) with significantly improved ROS generation and PDT performance. Their design of the Py-Cage highlights the large cavity and long distance which effectively weaken the π…π stacking effect of porphyrins within the nanocage. Hence this Py-Cage exhibits excellent anti-ACQ features at high concentrations in aqueous solution (Figure 1a,b,c).

Fig 1. (a) and (b) Schematic comparison between traditional planar porphyrin-based photosensitizers and the porous porphyrin nanocage in attenuating the ACQ effect. (c) Schematic illustration of the enhanced ROS generation for cationic organic nanocage Py-Cage. (d) Tumor pictures of 4T1 tumor-bearing mice after different treatments (for Py-cage samples). (e) Schematic of Py-Cage NPs synthesized by a nanoprecipitation method with DSPE-PEG2000 as the encapsulation matrix. (f) Tumor pictures of 4T1 tumor-bearing mice in different groups (for Py-cage NPs samples). Reproduced from DOI: 10.1039/D3MH01263H with permission from the Royal Society of Chemistry.

A systematic comparative investigation shows that the Py-Cage can largely boost ROS generation that is superior to its PyTtDy precursor as well as widely used PSs, including Chlorin E6 (Ce6) and Rose Bengal (RB). Having established the excellent ROS generation and bright fluorescence of the Py-Cage, the team then evaluated its in vitro PDT performance using mouse breast cancer 4T1 cell. The data shows the Py-Cage can generate a large amount of ROS in cells under white light irradiations to induce cell apoptosis and death. Encouraged by the very promising in vitro results, Zhu, Zhang et al. further conducted in vivo PDT trials of the Py-Cage using a 4T1 tumor bearing mouse model. Their findings indicate that the tumors in the Py-Cage+light group showed the smallest sizes and lowest tumor weights among all the tested groups (Figure 1d), reflecting the best tumor growth inhibition performance of Py-Cage under light. The biocompatibility of the Py-Cage was also investigated by analyzing the blood routine and biochemical parameters of the rats after 48 h injection through tail veins. All the results show that the Py-Cage does not cause infection and bleeding symptoms and no damage to the liver and kidney function was observed. Other parameters such as cholesterol (CHO), triglyceride (TG), high-density lipoprotein cholesterol (HDL), low-density lipoprotein (LDL), glucose level were also not affected by Py-Cage. Moreover, the team prepared the Py-Cage nanoparticles by a nano-precipitation method to improve its water disability and biocompatibility. Similar in vitro and in vivo PDT experiments with these Py-Cage NPs were conducted and the NPs also proved to be excellent in biocompatibility and PDT efficacy (Figure 1e,f).

In summary, this work demonstrated the first porphyrin-based pure porous organic nanocage (Py-Cage) with a large cavity volume to promote both type-I and type-II ROS generation. Through comprehensive in vitro and in vivo studies, the Py-Cage proved to be extremely powerful in PDT with excellent biocompatibility and enhanced anti-tumor efficacy. The design of Py-Cage with a pure organic porous skeleton could avoid the π…π stacking to fully utilize the excited triplet state of PSs to generate ROS. This design strategy will offer enormous prospects for preparing novel and effective PSs with excellent biocompatibility for PDT and related phototheranostic applications.

 

To find out more, please read:

A biocompatible pure organic porous nanocage for enhanced photodynamic therapy
Zhong-Hong Zhu, Di Zhang, Jian Chen, Hua-Hong Zou, Zhiqiang Ni, Yutong Yang, Yating Hu, Ruiyuan Liu, Guangxue Feng, Ben Zhong Tang
Mater. Horiz. 2023, 10, 4868-4881, DOI: 10.1039/D3MH01263H

 


About the blogger


 

 

Quan Li is currently a Professor at Tianjin University of Traditional Chinese Medicine and a member of the Materials Horizons Community Board. Prof. Li’s research lab focuses on the design and preparation of soft matter materials based on light-responsive molecular machines and Chinese herbal medicine for biomedical applications, including anti-cancer, skin disease treatment, and others.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Congratulations to the winners of the Materials Horizons prizes at MATSUS Fall 2023

Materials Horizons were delighted to sponsor two student prizes at the #BIOELCHEM symposium at MATSUS Fall 2023 held in Torremolinos, Spain from 16 – 20 October. Congratulations to Amrita Singh-Morgan (ETH Zurich) for being awarded the best poster presentation prize and Christopher Dreimol (ETH Zurich) for being awarded the best oral presentation. Find out more about our winners below:

Amrita Singh- Morgan

Originally from Leeds, Amrita studied Chemistry at the University of Edinburgh where she had the opportunity to do a year abroad in Switzerland. Persuaded by the alpine landscapes, she decided to do a PhD at ETH Zurich in the group of Prof. Mougel, where she now researches heterogeneous electrocatalysis.

 Using CO2 as a chemical feedstock is a promising method to produce valuable chemicals and fuels without fossil or biomass resources. Flue gas, which is formed from the combustion of fossil fuels, constitutes a major localised source from which CO2 could be captured and converted. Amrita’s research involves the electrochemical conversion of CO2 in tandem with another harmful component of flue gas, NOx, to valorise the products formed and maximise the environmental benefit.

Title of her poster: Until NOthing’s Left: Electrochemical Conversion of Nitric Oxide to Ammonia from Dilute Gas Streams

 

Christopher Dreimol

 

 

After completing an apprenticeship in the field of mechanical engineering at Kathrein SE (today Ericsson) in Rosenheim, Christopher Dreimol studied Biomimetics (B.Sc.) in the HS Bremen. He continued with a master’s in production engineering with a focus of material science at the University of Bremen that he finished with a master thesis at ETH Zürich working on bio-inspired materials together with Prof. André R. Studart. Today as a Ph.D. student, Christopher Dreimol works on sustainable wood-based electronics for smart buildings, sensors, soft electronics, and energy storage devices together with Prof. Dr. Ingo Burgert in the Wood Material Science Group at ETH Zürich and EMPA.

 

 

Title of his talk: Iron-Catalyzed Laser-Induced Graphitization: A Novel Approach to Produce Sustainable, Bio-Inspired Electrodes with Tunable Iron Phases.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Monitoring the Evolution of Segmental Order in Conjugated Polymers During Crystallization

Conjugated polymers (CPs) are transformative materials that have facilitated numerous advancements in the field of soft-matter electronics. Their low-cost, high structural tunability, and robust mechanical properties have made them desirable materials for broad range of applications, including in energy capture and storage, chemical and biological sensors, electronic skin, and electronic display devices. Recently, significant efforts have been made to develop intrinsically flexible and stretchable CPs and to understand the fundamental principles and structural characteristics that impart these elastomeric properties without impairment to charge transport. Central to this has been extensive characterization of the polymer morphology and microstructure, which yielded the discovery that local segmental order can facilitate efficient long-range charge transport in the amorphous domains of the polymer. However, directly probing the local segmental order in polymers and distinguishing the contributions of this domain towards the charge transport and physicochemical properties from that of the crystalline domains, which are defined by long-range ordering, remains challenging.

Now, a highly collaborative and extensive study by Luo et al. describes the development of a new technique for monitoring the subtle changes in the local segment order and amorphous fractions of the polymer microstructure by integrating Raman spectroscopy with fast-scanning calorimetry (FSC). The authors targeted a structurally diverse set of polymers to broadly classify their findings.

 

Figure 1. Modulating and probing microstructure of conjugated polymers by integrated ultrafast calorimetry and micro-Raman spectroscopy. Left: Schematic of this integrated technique. The time-temperature program used in this study was carried out by the chip sensor temperature controller. The growth of crystalline domain was identified by the evolution of melting peak collected through FSC. The degree of segmental order was analyzed by the Raman shift of C=C modes through resonant micro-Raman spectroscopy. Reproduced from DOI: 10.1039/D3MH00956D with permission from the Royal Society of Chemistry

Namely, analogs based on poly(3-hexylthiophene-2,5-diyl) (P3HT) and poly{2,2′-[(2,5-bis(2-hexyldecyl)-3,6-dioxo-2,3,5,6- tetrahydropyrrolo[3,4-c ]pyrrole-1,4-diyl)dithiophene]- 5,5′-diyl-alt-thiophen-2,5-diyl} (PDPP3T or PDPPT), which are prevalent throughout organic electronics. The polymers were first subjected to a carefully devised time-temperature program to erase the thermal history of the polymers by first subjecting the polymer samples to temperatures above their melting point (Tm). Following subsequent thermal quenching and annealing steps, the Raman and FSC measurements were recorded. By monitoring the evolution of the Raman spectra and tracking the shifts in C=C/C-N stretches with increasing annealing time, minute changes in the segmental order could be monitored. It was observed that the extent of segmental order saturates before maximum crystallinity is achieved and that the annealing temperature could be specifically tailored for the polymers to achieve a highly ordered microstructure with desired levels of crystallinity.

Next, polymer segmental order was correlated with the segmental dynamics and charge transport properties by using alternating current (ac) chip-calorimetry and fabricating organic field effect transistors (OFETs). It was found that the rigid amorphous fraction (RAF) plays a significant role in promoting segmental order, and that there is a strong correlation between the polymer segmental order and the OFET charge-carrier mobility. Overall, the findings, magnitude, and scope of this study makes it a pivotal work for the field of organic electronics, and it should have resounding impact throughout material science.

To find out more, read the full manuscript here:

Real-time correlation of crystallization and segmental order in conjugated polymers

Shaochuan Luo, Yukun Li, Nan Li, Zhiqiang Cao, Song Zhang, Michael U. Ocheje, Xiaodan Gu, Simon Rondeau-Gagné, Gi Xue, Sihong Wang,  Dongshan Zhou and Jie Xu

Mater. Horiz., 2023, Advance Article, DOI: 10.1039/D3MH00956D

 


About the blogger


Robert M. Pankow is an Assistant Professor at The University of Texas at El Paso and a member of the Material Horizons Community Board. Dr. Pankow’s research focuses on conjugated polymer synthesis, sustainable chemistry, and organic electronics. You can follow him on X (formerly Twitter) @RobertPankow.
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Meet our new Advisory Board member- Paulette Clancy

Materials Horizons are delighted to welcome Professor Paulette Clancy as the newest member of the Advisory Board. 

Paulette Clancy is the Edward J. Schaefer Professor of chemical and biomolecular engineering. More recently, she became the director of research for the AI-X Foundry. She is the Associate Director of the Johns Hopkins Center for Integrated Structure-Mechanical Modeling and Simulation (CISMMS), and a fellow of the Hopkins Extreme Materials Institute (HEMI) and AIChE. She spent over 30 years teaching at Cornell before moving to Johns Hopkins in 2018 to become the inaugural department Head of ChemBE.

Clancy leads one of the top groups in the country studying atomic- and molecular-scale modeling of semiconductor materials, ranging from traditional silicon-based compounds to all-organic materials. Her group’s research comprises four main areas: advanced organic materials (covalent organic frameworks, antibacterial oligomers, organic electronics); algorithm development (force field development, machine learning, and Bayesian optimization); electronic materials (particularly III-IV semiconducting materials; and nucleation and crystal growth (hybrid organic/inorganic perovskites and quantum dot nanocrystals). Her lab focuses on studies of advanced materials processing and nucleation, including understanding the links between processing, structure, and function.

Her group is at the forefront of developing new Bayesian optimization methods to encode expert knowledge and intuition, creating optimal conditions for making energy-efficient solar cells, close-to-perfect quantum dots, and discovering polymorphs of electronic materials for shape memory applications.

She is a fierce long-term advocate for the increased representation of women and those from groups under-represented in engineering and the physical sciences.  She was the founding chair of a faculty group, “Women in Science and Engineering” for Cornell University. Among her awards for that advocacy is the American Institute of Chemical Engineers (AIChE) National Women’s Initiatives Mentoring Award. She is a member of the mentoring team for Project Elevate, a DEI initiative between Hopkins in partnership with NYU and CMU.

 

Check out some of Paulette’s recent RSC publications:

A comprehensive picture of roughness evolution in organic crystalline growth: the role of molecular aspect ratio

Jordan T. Dull, Xiangyu Chen, Holly M. Johnson, Maria Clara Otani, Frank Schreiber, Paulette Clancy and  Barry P. Rand

Mater. Horiz., 2022,9, 2752-2761, DOI: 10.1039/D2MH00854H

 

A new metric to control nucleation and grain size distribution in hybrid organic–inorganic perovskites by tuning the dielectric constant of the antisolvent

Blaire A. Sorenson, Lucy U. Yoon, Eric Holmgren, Joshua J. Choi and Paulette Clancy

J. Mater. Chem. A, 2021,9, 3668-3676, DOI: 10.1039/D0TA12364A

 

A multiscale approach to uncover the self-assembly of ligand-covered palladium nanocubes

Xiangyu Chen, Thi Vo and Paulette Clancy

Soft Matter, 2023, Advance Article, DOI: 10.1039/D3SM01140B

 

Read our interview with Paulette below:

What does it mean to you to join the Advisory Board of Materials Horizons?

I feel honored to join the Advisory Board because this is such an exciting and relatively new journal. It brands itself as being “transformative” and that’s how I have found the research that it publishes. I am glad to be part of the team to keep up the wonderful momentum that it has.

What is the current biggest challenge you face in your field?

I work in the area of machine-learning guided materials discovery. The biggest challenge I currently face is to sift through the burgeoning number of new methods in this hot area and learn which ones are truly exciting and ground-breaking.

Why do you feel that researchers should choose to publish their work in Materials Horizons?

MH has it all: Thoughtful and helpful reviewers, short time to triage and review, and careful selection of strong papers.

Can you tell us about one of your latest Materials Horizons publications?

I actually have some of my most exciting new Bayesian optimization algorithm development under review with MH right now, so fingers crossed for that one. My last paper involved a joint computational (us)-experimental (Princeton) study of the thin-film growth of molecules that could be used for electronic devices. To function well in that regard, you need to create films that are as smooth as possible. Our paper looked at a few candidates for new electronic materials and showed that you need to take a holistic view of the growth process rather than relying just on the traditional step-edge energy barriers to arbitrate between rough (unwanted) and smooth growth (desirable).  We were thrilled to be recognized with an “Editor’s Choice” designation and the cover. 

 

Paulette’s last Materials Horizons article was featured on the issue front cover

Please join us in welcoming Paulette to the Materials Horizons Advisory Board!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Open Call for Submissions: Themed collection on Memristors and Neuromorphic Systems

Memristors and Neuromorphic Systems

Submit your latest work to Nanoscale Horizons and Materials Horizons now!

We are delighted to announce an open call for submissions to our cross-journal themed collection on ‘Memristors and Neuromorphic Systems’ to be published across Nanoscale Horizons and Materials Horizons

This collection is being Guest Edited by:

Prof. Xiaodong Chen (Nanyang Technological University, Singapore)

Prof. Cheol Seong Hwang (Seoul National University, Korea)

Prof. Francesca Santoro (Forschungszentrum Jülich, Germany)

Prof. Yoeri Van de Burgt (Eindhoven University of Technology, The Netherlands)

In late 2022, ChatGPT was launched with global impact across many different fields and society. However, similar to other artificial intelligence (AI) algorithms it has a substantional downside: consuming a lot of energy. ChatGPT requires almost ten times more energy cost than a conventional search algorithm, such as Google, as the large language model used in this new algorithm is built on a massive neural network, where the number of parameters to be optimized is overwhelming (several hundreds of billions). These models fundamentally belong to machine learning algorithms, where backpropagation-based deep learning produces remarkable performances. However, these methods are entirely disparate from human brain operation, which operates in a massively parallel and spike-based fashion and vastly outperforms computing algorithms in some classification tasks at much lower energy cost.

The research field dedicated to mimicking the brain is called neuromorphic engineering, and covers a wide range of disciplines, including electrical engineering, computing, materials science, chemistry, physics, and even psychology. Yet, conventional CMOS-based hardwares are based on the von-Neumann architecture which operates sequentially (instead of in parallel) suffling data back and forth between processing and memory, and thus barely fulfil the low-energy requirements for neuromorphic engineering. Memristors, which can be synaptic, neural, or even a combination of both, offer a potential solution and as such have been the focus of enhanced research efforts. In addition to their low-energy cost requirements, new materials properties employed by memristors may lead to new algorithms or help solve conventionally challenging tasks, such as NP-hard problems.

This themed collection in Materials Horizons and Nanoscale Horizons aims to report the latest developments in memristive materials. Exploring their fabrication, characterization, circuit design, and performance for applications in the future of neuromorphics. Collaborative work between diverse fields is especially encouraged.

Submissions Deadline: 30th November 2023

Submissions should fit within the scope of either Nanoscale Horizons or Materials Horizons. Please click on the journal link for more information on the journal’s scope, standards, article types and author guidelines. We invite authors to select the journal that best suits their submission.

This open call is open for primary research submissions only and review content will be invite-only. Please note that primary research is accepted in the form of Communications for both journals and requires a ‘New Concepts statement’ to help ascertain the significance of the research. General guidance and examples can be found here.

For Nanoscale Horizons, we welcome high-quality studies across all fields of device/design and nanoscale materials and for Materials Horizons, we welcome exceptionally high-quality, innovative materials science research focusing on new materials and their applications.

If you wish to contribute, please submit your manuscript directly to the submissions platform for either Nanoscale Horizons or Materials Horizons and add a note in the ‘Comments to the Editor’ and the ‘Themed issues’ sections of the submissions page to say that this is an open call submission to the themed collection on Memristors and Neuromorphic Systems. If accepted and if suitable for the collection, your article will be added to the ongoing online collection after publication and published in a regular issue of the journal for enhanced visibility. The collection will be promoted around Spring 2024 and beyond.

All submissions will undergo a rigorous peer review process, including an initial Editorial assessment as to suitability for the journal before potential peer review.

If you have any questions, please contact the Editorial Office at materialshorizons-rsc@rsc.org.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Materials Horizons welcomes Professor Guoping Chen to the Editorial Board

Materials Horizons are delighted to welcome Professor Guoping Chen from the National Institute for Materials Science in Japan to the Editorial Board as a Scientific Editor.

 

 

Guoping Chen is a Group Leader at the National Institute for Materials Science (NIMS) and a Professor at the University of Tsukuba. He received his Ph.D. from Kyoto University in 1997 majoring in polymer biomaterials and did postdoctoral research until 2000. He joined the Tissue Engineering Research Center, National Institute for Advanced Industrial Science and Technology as a Researcher in 2000 and a Senior Researcher in 2003. He moved to the Biomaterials Center, NIMS as a Senior Researcher in 2004 and was promoted to Group Leader in 2007. He served as a Principal Investigator and Unit Director of the International Center for Materials Nanoarchitectonics (MANA), NIMS from 2011 to 2017. He concurrently joined the Joint Doctoral Program in Materials Science and Engineering, University of Tsukuba as an Associate Professor in 2004 and a Professor in 2013. He is a Fellow of the Royal Society of Chemistry (FRSC, 2015), the American Institute for Medical and Biological Engineering (AIMBE, 2017) and the International Union of Societies for Biomaterials Science and Engineering (FBSE, 2020). His research focuses on biomaterials, scaffolds, biomimetic matrices, micro-patterning, surface modification, tissue engineering, regenerative medicine and nanomedicine.

Check out Guoping Chen’s lab webpage here to find out more about his research.

 

 

 

Guoping Chen joins the Materials Horizons Editorial Board after previously having an Associate Editor role on Journal of Materials Chemistry B and Materials Advances. To mark this transition, he has selected some outstanding recent articles and reviews on the topic of tissue engineering across Materials Horizons, Journal of Materials Chemistry B and Materials Advances. We welcome you to read this Editor’s Choice collection on tissue engineering and check out the Editorial written by Guoping Chen to introduce the collection.

 

Read our interview below to find out more about Guoping:

 

1. What attracted you to pursue a career in materials science and how did you get to where you are now?

I have been interested in almost anything since I was a kid. I could imagine something that I did not know or had never seen. Such curiosity had driven me to show more interest on materials science after entering high school. During college study, I spent a lot of time doing experiments. By doing experiments, I found materials science more and more interesting. So, I decided to enter materials science field when I entered graduate school in 1986. Since then, I have been involved in this field for more than 36 years. Now, doing scientific experiments to synthesize new materials and to discover new phenomena has become one of my interests. My curiosity and persistence have brough many benefits to my research career.

 

2. Why did you choose to specialize in your specific research field?

From 1994 to 1997, I did my Ph.D. study at Department of Materials Chemistry of Kyoto University majoring in biomaterials. After graduation, I got two offers. One was tissue engineering research and the other was synthesis of stimuli-responsive polymers and actuators. I chose the first one because I thought I could challenge more new things in the interdisciplinary field of materials science and biological science. So, I joined the tissue engineering research group of a national research institute. Since then, I have been enjoying working in the field.

 

3. What do you see as the biggest challenges facing researchers who work in your field?

Many advanced approaches have been developed for regeneration of functional tissues and organs through materials science, biomimetics, synthetic chemistry, biomechanics and cell biology. In some cases, very complicated approaches have been proposed and used. Sometimes I think the system of our body may not be as complex as we think. There may be some switches to reveal the simple way that our body uses to assemble all cells and components together into functional tissues and organs. Finding the switches and learning from the natural assembly clues to create multi-functional biomaterials and scaffolds may be the biggest challenges in my research field.

 

4. What do you see as the most important scientific achievement of the last decade?

I think it is CRISPR gene editing. It provides a cheap and easy way to precisely edit DNA. It is attractive for the treatment of refractory diseases such as cancer, HIV and genetic diseases.

 

5. What excites you most about your area of research and what has been the most exciting moment of your career so far?

Multi-functional scaffolds are amusing because they are similar to the housing where cells live. They can provide a variety of physicochemical, biological, biomechanical and therapeutic signal and factors to guide functional tissue regeneration, to maintain cellular homeostasis and to treat diseased cells. The most exciting moment for me was in 2000 when I succeeded in preparing hybrid scaffolds of biodegradable synthetic polymers and naturally derived polymers. The hybrid scaffolds have high mechanical strength and good biocompatibility and can be used for regeneration of large tissues such as large cartilage for treatment of osteoarthritic cartilage defects. The research had been introduced twice by Nature BioNews.

 

6. What is your favourite reaction or material, and why?

Biomimetic materials are very attractive to me. If we can mimic the compositions, structures and processes of tissue and organ development, we can more easily control cell functions and tissue regeneration.

 

7. The Journal of Materials Chemistry B and Materials Advances Editorial Boards are sad to see you leave but are excited for your new role. What will you miss most about being an Associate Editor on Journal of Materials Chemistry B and Materials Advances?

I’m really proud to have joined the editorial team to work for Journal of Materials Chemistry B for nine years shortly after the JMC split and to work for Materials Advances since its launch. I appreciate the strong support and help from the great team. I am very happy to have worked with all colleagues. I had a lot of happy times and good memories during the daily editorial work, the editorial board meetings in Cambridge and RSC Editors’ Symposium in London. I have had many opportunities to communicate with our authors and reviewers. I will miss them very much. I hope they will continue to support the journals by publishing their excellent research achievements in the journals and providing excellent reviewing services for the journals.

 

8. What attracted you to join the Editorial Board of Materials Horizons?

I often read the articles published in Materials Horizons. The high quality of the articles has given me an impression that the editorial team is always doing a great job to edit the best articles for the readers. Now I am very happy to join the team to make some contributions.

 

9. The Materials Horizons team are delighted to welcome you to the Editorial Board. What are you most looking forward to when acting as a Scientific Editor for the journal?

I will fully use my previous editorial experience to provide the best service to satisfy our authors and readers.

 

10. What is your biggest passion outside of science?

I like jogging and cooking. After my daily work, I go jogging in a park at night. It is my happiest moment because I can relax more and think of some new research ideas while enjoying the natural night view. If time permits, I also cook because cooking is like doing chemical experiments. There are raw materials, processes and final products. There are a lot of fun.

 

11. Why should young people study chemistry or related subjects?

Chemistry can help us to understand the essence of nature and to synthesize novel and functional compounds and materials for innovation. Chemistry is the fundamental and central science for many fields including materials science and biological science.

 

12. What impact do you feel that your area of research can make over the next 10 years?

Many new techniques such as biomimetics, bioprinting and hybridization have been developed for scaffold preparation and functionalization. Advanced scaffolds with more biomimetic structures and functions will be achieved for the regeneration of not only simple tissues, but also complex organs. Multi-functional scaffolds will provide synergistic effects of different therapeutic treatments and regenerative approaches.

 

 

Please join us in welcoming Professor Guoping Chen to the Materials Horizons Editorial Board. We encourage you to submit your best work to Guoping and our team of Scientific Editors now! Check out the Materials Horizons author guidelines for more information on our article types.

 

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Introducing Jean-Luc Brédas as a new Scientific Editor on Materials Horizons

Materials Horizons are delighted to welcome Professor Jean-Luc Brédas from the University of Arizona, USA as a Scientific Editor.

 

Professor Jean-Luc Bredas received his B.Sc. (1976) and Ph.D. (1979) degrees from the University of Namur, Belgium. In 1988, he was appointed Professor at the University of Mons, Belgium, where he established the Laboratory for Chemistry of Novel Materials. While keeping an “Extraordinary Professorship” appointment in Mons, he joined the University of Arizona in 1999. In 2003, he moved to the Georgia Institute of Technology where he became Regents’ Professor of Chemistry and Biochemistry and held the Vasser-Woolley and Georgia Research Alliance Chair in Molecular Design. Between 2014 and 2016, he joined King Abdullah University of Science and Technology (KAUST) as a Distinguished Professor and served as Director of the KAUST Solar & Photovoltaics Engineering Research Center. He returned to Georgia Tech in 2017 before moving back to the University of Arizona in 2020 where he is currently Regents Professor in the Department of Chemistry and Biochemistry. Jean-Luc Brédas is an elected Member of the International Academy of Quantum Molecular Science, the Royal Academy of Belgium, and the European Academy of Sciences. Recent honors include the 2013 American Physical Society David Adler Lectureship Award in the Field of Materials Physics, the 2016 American Chemical Society Award in the Chemistry of Materials, the 2019 Alexander von Humboldt Research Award, the 2020 Materials Research Society Materials Theory Award, and the 2021 Centenary Prize of the RSC. He is an Honorary Professor of the Institute of Chemistry of the Chinese Academy of Sciences and holds an Adjunct Professorship at the Georgia Institute of Technology. His Focus Article “Mind the Gap” is the first article that appeared in the very first issue of Materials Horizons.

 

Read our interview with Jean-Luc below.

 

1. What attracted you to pursue a career in materials science and how did you get to where you are now?

 It was initially a love for chemistry, which grew into a passion for computational chemistry and organic chemistry. With organic materials becoming increasingly appealing because of their opto-electronic properties and broad range of applications, I gradually evolved into a computational materials scientist.

 

2. Why did you choose to specialize in your specific research field?

Because of a major scientific event that took place as I was starting my Ph.D.: The then-surprising discovery by Alan Heeger, Alan McDiarmid, and Hideki Shirakawa in late 1976 that organic polymers can be made highly electrically conducting, which led to the 2000 Nobel Prize in Chemistry. That discovery is what decided where I wanted to do my post-doc and everything else followed from there.

 

3. What do you see as the most important scientific achievement of the last decade?

Given the pandemic context, the development of m-RNA based vaccines springs to mind. In my field, the emergence of bio-organic electronics is very exciting as well as that of organic-inorganic hybrid perovskites.

 

4. What excites you most about your area of research and what has been the most exciting moment of your career so far?

The fact that the area of organic electronics and photonics combines the need for understanding of fundamental scientific processes with real-world applications: OLED displays are so cool!

 

5. Which of your Materials Horizons publications are you most proud of and why?

It turns out that I signed the very first article published by the journal in early 2014: “Mind the Gap”. It was a Focus Article, which many told me has been very useful to get clear ideas of the distinctions among band gap, optical gap, transport gap, etc.

 

6. Why do you feel that researchers should choose to publish their work in Materials Horizons?

 Because of the journal’s high standards; because their work is initially assessed by scientific editors who are fellow active researchers; and because the journal highlights the new conceptual advances that the authors’ quality work brings forward.

 

7. What attracted you to join the Editorial Board of Materials Horizons?

I was a member of the original Editorial Advisory Board of the journal. I was seduced by the vision that the then Chair of the Editorial Board, Seth Marder, brought to what has become the flagship materials journal of the RSC. I am happy now to be in a position to contribute more directly.

 

8. The Materials Horizons team is delighted to welcome you to the Editorial Board. What are you most looking forward to when acting as a Scientific Editor for the journal?

What I hope to contribute is to a healthy growth of the journal where we strive to keep increasing its high standards, to make sure all members of the materials community are actively involved in its evolution, and to promote respect, diversity, and inclusion in everything we do for the journal.

 

9. What impact do you feel that your area of research can make over the next 10 years?

The application of organic optoelectronics on the bio side and its contributions to personalized medicine as well as to healthcare in developing countries. The appearance of organic solar cells out in the real world. The discovery of exotic quantum phases in purely organic π-conjugated materials.

 

10. What is your favourite reaction or material, and why?

I’ll have to say trans-polyacetylene, even though it is not a polymer that will have big-time applications given its instability. However, this is the material that arguably started the interest in the optoelectronic properties of organics. Also, the wealth of physics behind its deceivingly simple chemical structure is amazing!

 

 11. Why should young people study chemistry or related subjects?

The events of the past two years as well as the dark issues facing our planet, make it more important than ever that the young generations embark on scientific studies, combined with the right political activism.

 

12. What is your biggest passion outside of science?

My family and soccer. It is a blast that both our daughters now live in Tucson and we can see them very often. Soccer-wise, it is nice to realize that the US are increasingly embracing the “beautiful game”; it’s comforting as well that “I’ll never walk alone”.

 

Submit to Materials Horizons now! Check out our author guidelines for information on our article types or find out more about the advantages of publishing in a Royal Society of Chemistry journal.

Keep up to date with our latest articles, reviews, collections & more by following us on TwitterFacebook or by signing up to our E-Alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)