Archive for the ‘Hot Article’ Category

Lanthanide macrocycle complexes endow graphene electronics with unprecedented stability

Scientists in India have made graphene field-effect transistors that work for over 10 months with some help from discrete inorganic structures. The approach has led them to produce a graphene logic inverter that is stable in ambient conditions.

Conventional electronics tend to be silicon based, due to the ease of doping silicon with either electrons or holes. These two forms of silicon, n- and p-type, are the building blocks of electronic devices. However, it isn’t possible to make silicon electronics on the nanoscale, so many researchers are turning to materials like graphene.

An essential component of digital electronics is a logic inverter – a device for switching between fixed voltage levels. Inverters combine n-type field effect transistors and p-type field effect transistors, so require both n-type and p-type graphene.

Source: © Maheswaran Shanmugam/Indian Institute of Technolgy Bombay
The lanthanide-macrocyclic complexes exhibit strong C-H–π interactions with graphene, leading to a sharp and stable negative shift in the Dirac point

To read the full article visit Chemistry World.

Lanthanide complexes as molecular dopants for realizing air-stable n-type graphene logic inverters with symmetric transconductance
Ashwini S. Gajarushi, Mohd Wasim, Rizwan Nabi, Srinivasu Kancharlapalli, V. Ramgopal Rao, Gopalan Rajaraman, Chandramouli Subramaniam and Maheswaran Shanmugam
Mater. Horiz., 2019, Advance Article
http://dx.doi.org/10.1039/C8MH01241E

 

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Pressure washer method for making graphene

New process generates high quality 2D crystals in minutes

Liquid-phase exfoliation of layered crystals

Source: © Royal Society of Chemistry

For few- and single-layered materials like graphene to be industrially useful there needs to be a scalable, cheap and reproducible way to produce them. Now, scientists in Italy have come up with a new exfoliation process that meets all of these requirements.

Francesco Bonaccorso and co-workers from the Italian Institute of Technology propose what they call a high pressure wet-jet-milling process to, essentially, blast apart layers of materials like graphite. A hydraulic mechanism and piston generate up to 250MPa of pressure to push a mixture of the bulk material dispersed in solvent through five different disks. The disks are interconnected and perforated with tiny adjustable holes (0.3–0.1mm diameter), which generate colliding jet streams. A similar idea is already used in industry to pulverise drugs or paints.

The major advantage here is that it takes only minutes to produce high quality 2D crystals that would take hours to make by other methods: it takes less than 3 minutes to make 1g. The resulting dispersions of 2D crystals are shown to be usable for inkjet printing and in battery anodes without needing a purification step.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Some of the most popular 2017 articles in Materials Horizons

We are delighted to share with you some of the most popular articles that were published in Materials Horizons in 2017.

Last year our Materials Horizons community published a larger number of articles of exceptional significance than ever before. We hope you enjoy reading this selection of some of the most highly cited* and most frequently downloaded articles from 2017.


Focus

Thermoresponsive polymers with lower critical solution temperature: from fundamental aspects and measuring techniques to recommended turbidimetry conditions
Qilu Zhang, Christine Weber, Ulrich S. Schubert and Richard Hoogenboom

Review

Metal organic framework based catalysts for CO2 conversion
James W. Maina, Cristina Pozo-Gonzalo, Lingxue Kong, Jürg Schütz, Matthew Hill and Ludovic F. Dumée

Heteroatom-doped graphene as electrocatalysts for air cathodes
Huijuan Cui, Zhen Zhou and Dianzeng Jia

Atomic layer deposition for nanomaterial synthesis and functionalization in energy technology
Xiangbo Meng, Xinwei Wang, Dongsheng Geng, Cagla Ozgit-Akgun, Nathanaelle Schneider and Jeffrey W. Elam

Metal-organic frameworks: a novel host platform for enzymatic catalysis and detection
Effrosyni Gkaniatsou, Clémence Sicard, Rémy Ricoux, Jean-Pierre Mahy, Nathalie Steunou and Christian Serre

Communication

Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality
Zewen Xiao, Weiwei Meng, Jianbo Wang, David B. Mitzi and Yanfa Yan

Quaternisation-polymerized N-type polyelectrolytes: synthesis, characterisation and application in high-performance polymer solar cells
Zhicheng Hu, Rongguo Xu, Sheng Dong, Kai Lin, Jinju Liu, Fei Huang and Yong Cao

Functional conductive nanomaterials via polymerisation in nano-channels: PEDOT in a MOF
Tiesheng Wang, Meisam Farajollahi, Sebastian Henke, Tongtong Zhu, Sneha R. Bajpe, Shijing Sun, Jonathan S. Barnard, June Sang Lee, John D. W. Madden, Anthony K. Cheetham and Stoyan K. Smoukov

Efficient triplet–triplet annihilation upconversion in binary crystalline solids fabricated via solution casting and operated in air
Kenji Kamada, Yusuke Sakagami, Toshiko Mizokuro, Yutaka Fujiwara, Kenji Kobayashi, Kaishi Narushima, Shuzo Hirata and Martin Vacha

Programming 2D/3D shape-shifting with hobbyist 3D printers
Teunis van Manen, Shahram Janbaz and Amir A. Zadpoor


 

Check out our most recent articles from 2018…

 

At Materials Horizons, our reviewing standards are set extremely high to ensure we only publish first reports of new concepts across the breadth of materials research. Our impact factor of 10.706** is testament to the exceptionally significant work of our community.

Contact us: materialshorizons-rsc@rsc.org

Follow us: Homepage | Twitter | Facebook | Blog | E-alerts | RSS

 

 

*Web of Science (February 2018) © Clarivate Analytics.
**2016 Journal Citation Reports (June 2017) © Clarivate Analytics.

 

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Solar-Driven Nitrogen Fixation to Ammonia: Lighting the Way toward Green Chemistry

Is it feasible to convert nitrogen to ammonia using water and light?

With international collaboration, scientists from China and Singapore have looked into the aspect of the state-of-the-art engineering of photocatalysts for the nitrogen (N2) fixation toward understanding the ammonia (NH3) synthesis. The work was recently reported by Dr. Wee-Jun Ong and co-workers in Materials Horizons, which is featured on the Inside Front Cover in Volume 5, Issue 1 in 2018.

(a) An overview of the N2 cycle and circulation of N2 in various forms. (b) Diagram of the state-of-the-art milestone in the development of photocatalysts for N2 fixation.  Images adapted from Chen et al., Mater. Horiz., 2018, Advance Article with permission from The Royal Society of Chemistry. 

N2 is one of the most abundant gases on the Earth, comprising 78% in our atmosphere. Nonetheless, N2 in the gaseous state cannot be effectively utilized by organisms. Therefore, N2 must be “fixed” to make it valuable by breaking the strong NN triple bonds to transform it into a form that can be consumed by plants, animals and human beings. Hitherto, two typical methods to realize the fixation of N2 are: (1) a natural and bacterial process, and (2) the Haber-Bosch process in industry. For the last 100 years, the N2 conversion has led to the commercial fertilizer production and sustained the food intake supply for the worldwide population. However, the Haber-Bosch process consumes high pressures and temperatures, hence demanding a huge quantity (~2%) of the fossil fuel source. Thus, it is envisaged that the alternative process, which utilizes nanomaterials to absorb photon to mimic the natural photosynthesis in green leaves, can act as a paradigm shift for fixing nitrogen.

In this Review, the photo(electro)catalysts are classified based on the chemical compositions ranging from metal oxide to metal sulfide, bismuth oxyhalides, carbonaceous nanomaterials and other potential materials. The significance and relationship between the modification (e.g. nanoarchitecture design, crystal facet engineering, doping, and heterostructuring) and influences on the photo(electro)chemical activity of the catalysts are highlighted. Last but not least, to divert from the present laboratory-scale level to industrial applications, additional thoughts must be devoted to translating from academic research to practicality. How to amplify the yield of developed catalysts while preserving the intrinsic structures for the commercialization of “ammonia photosynthesis” is of universal challenge.

 

Read the full article here:
Xingzhu Chen, Neng Li,* Zhouzhou Kong, Wee-Jun Ong* and Xiujian Zhao
DOI: 10.1039/C7MH00557A

 

Wee-Jun Ong is a member of the Community Board for Materials Horizons. Currently, he works as a Staff Scientist in the Institute of Materials Research and Engineering (IMRE) at Agency for Science, Technology and Research (A*STAR) in Singapore. His research interests focus on photocatalytic, photoelectrochemical and electrochemical H2O splitting, CO2 reduction, N2 fixation and H2O2 production for energy conversion and storage via experimental and density functional theory (DFT) studies. At present, he also serves as the Associate Editor of Frontiers in Chemistry and Frontiers in Materials, and an Editorial Board Member of Scientific Reports, Nanotechnology and Nano Futures. Check out his personal research website here.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Enhanced lithium storage properties of oriented metal oxide nanodots on graphene

The synthesis of oriented metal oxide nanodots on graphene oxide (GO) sheets using a surfactant-directed assembly strategy was recently reported by Professor Liqiang Mai and co-workers in Materials Horizons. This technique presents a versatile and general method for the synthesis of carbon-confined metal oxide nanodots, as well as a way to significantly enhance the energy storage properties of metal oxide nanocomposites.

Tin dioxide (SnO2) is a promising candidate electrode material for high performance lithium-ion batteries, due to its high theoretical capacity. However, the large volume expansion caused by lithium intercalation into SnO2 (up to 300%) results in poor cycling stability. In this article, metal-ligand bonds were used to immobilise SnO2 nanodot precursors onto a functionalised GO surface. The nanodots were complexed with organic ligands and subsequently carbonised to form nanocrystalline carbon-confined metal oxide nanodots (C@SnO2@Gr). Nanocrystallinity was achieved through the mismatched coordination of the organic ligands, as the distortion prevented aggregation of the precursor and crystal growth across larger areas.

When tested in a lithium-ion battery, the C@SnO2@Gr nanodots were found to have exceptional cycling stability and capacity over 1200 cycles in comparison to similar carbonised SnO2 nanocomposites. The material also demonstrated excellent rate capabilities, facilitated by its high surface area.

This paper highlights a promising method for the general synthesis of metal oxide nanodots, including SnO2, Cr2O3, Fe3O4, and Al2O3. Furthermore, this method could be used to enhance the lithium storage capabilities of metal oxide materials for future energy storage applications.

 

Read the full paper here:
Jiashen Meng, Ziang Liu, Chaojiang Niu, Linhan Xu, Xuanpeng Wang, Qi Li, Xiujuan Wei, Wei Yang, Lei Huang and Liqiang Mai
Mater. Horiz., 2018, Advance Article
DOI: 10.1039/C7MH00801E

 

Markus Müllner is a member of the Community Board for Materials Horizons and an academic at The University of Sydney. Markus and Honours student Olivia McRae are interested in nanostructuring electrode materials to advance performance of lithium ion batteries. https://www.polymernanostructures.com/

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Deep sight into the brain: organic nanoparticles for imaging in the second near-infrared window

Researchers have long been interested in peering into the brain. Added to the inherent challenge of imaging through biological medium, the skull presents a major barrier that highly attenuates light.

To overcome this barrier, in a recent communication in Materials Horizons, Guo et al. have synthesized an organic nanoparticle for photoacoustic imaging with absorbance in the second near-infrared window. At this wavelength, there is relatively low scattering from tissue allowing for deeper penetration of light.

Photoacoustic images of a brain tumor after nanoparticle injection. The grey ultrasound image shows the skin and the skull margin, and the green signal indicates the nanoparticle distribution. Image adapted from Guo et al., Mater. Horiz., 2017, Advance Article with permission from The Royal Society of Chemistry. 

Nanoparticles were made from benzodithiophene-benzobithiadiazole donor-acceptor pairs co-polymerized and nanoprecipitated using biocompatible materials. When these imaging nanoparticles were applied to mice with orthotopic brain tumors, tumors 3.4 nm below the skull were resolved with a nearly 100-fold increase in photoacoustic signal compared to before intravenous administration of nanoparticles. The stable, high contrast photoacoustic imaging nanoparticle presented in this work offers a versatile platform for simple chemical modifications such as ligand targeting or drug loading.

Future work remains on the horizon to advance these materials for imaging through the ~5 mm thickness of human skulls.

 

Read the full article here:
Bing Guo, Zonghai Sheng, Kenry, Dehong Hu, Xiangwei Lin, Shidang Xu, Chengbo Liu, Hairong Zheng and Bin Liu

 

Ester Kwon is a member of the Community Board for Materials Horizons. Currently, she works as an Assistant Professor in the Department of Bioengineering at University of California San Diego, USA. Check out her personal website here.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

A simple gradient makes biomimetic surfaces extremely durable

A new and highly controllable technique to manufacture functional gradient nanocomposites has been reported in a recent article, published in Materials Horizons. The technique enables smooth and programmable stiff-to-compliant (or compliant-to-stiff) transitions within micro-scale regions.

This technique, developed by Dr. Zhengzhi Wang and colleagues at Wuhan University, is based on a typical two-step process:

  1. Use a magnetic field to generate a desired concentration gradient of magnetic-responsive nano-reinforcements inside a polymer matrix in liquid state.
  2. Polymerize and solidify the redistributed polymer nanocomposites.

Using this technique, Wang et al. fabricated various biomimetic interfaces and surfaces and found that the functional gradient designs, with reduced stress concentrations, simultaneously improved the mechanical strength and durability over an order of magnitude compared with the traditional homogeneous counterparts.

The magnetically-actuated functional gradient nanocomposites can be further integrated into advanced additive manufacturing techniques to create a wide range of functional heterogeneous materials with unprecedented combinations of mechanical properties.

TEM image of functional gradient nanocomposites for compliant-stiff-compliant transitions

Read the full article here:
Zhengzhi Wang,* Xiaoming Shi, Houbing Huang,* Chenmin Yao, Wen Xie, Cui Huang, Ping Gu, Xingqiao Ma, Zuoqi Zhang and LongQing Chen
DOI: 10.1039/c7mh00223h

 

Mengye Wang is a member of the Community Board for Materials Horizons. Currently, she works as a postdoctoral fellow in the Department of Applied Physics at The Hong Kong Polytechnic University. She has a keen interest in advanced materials for environmental and energy applications, including photocatalysis and electrocatalysis.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Band-engineering in lead-free double perovskites

Hybrid double perovskites have recently gained a vast amount of attention in the research area of photovoltaics as lead-free alternatives to the ground-breaking parent material [CH3NH3]PbI3.1 In double perovskites with the general formula A2B’B’’X6, two Pb2+ cations are effectively replaced with a monovalent B’ and a trivalent B’’ cation. Among the many fascinating properties of hybrid inorganic-organic perovskites, it is arguably the combination of strong light absorbance and long carrier lifetimes that make them so interesting for photovoltaic applications and light-emission devices. Recent experimental and theoretical studies on [CH3NH3]PbI3 revealed a direct-indirect character of the bandgap, i.e. [CH3NH3]PbI3 exhibits a direct band gap which is only approximately 47-60 meV higher in energy than the indirect band gap. Presumably, this is the origin of the paradox of strong absorption and long charge carrier lifetimes. When now turning our attention to lead free double perovskites, examples such as [CH3NH3]2KBiCl6 and [CH3NH3]2AgBiBr6 exhibit an indirect band gap,1 hence unfavourable light absorption properties. The symmetry mismatch that leads to the indirect band gap in such materials was recently studied by D. O. Scanlon and A. Zunger theoretically.2,3 Consequently, it is important to ask the question: is it possible to experimentally design a direct band gap in double perovskites?

In the recent article in Materials Horizons, ‘Designing Indirect-Direct Bandgap Transitions in Double Perovskites’,4 T. M. McQueen and co-workers have tackled this important question, studying the solid solution Cs2AgIn1-xSbxCl6 as a prototypical example. By wisely choosing B’ and B’’, a direct band gap in Cs2AgInCl6 has been achieved. The beauty lies in the simplicity of the concept – the understanding of band theory, i.e. symmetry and formation of bands with s-type and p-type character, see Figure 1. Going along the solid solution Cs2AgIn1-xSbxCl6, the valence band remains basically unchanged, whilst the character of the conduction band is continuously altered from s-type to p-type character. Clearly, the use of a chloride and in turn the ionic character of the solid with a band-gap larger than 3.5 eV limits the application of Cs2AgInCl6 in optoelectronics. However, the results depict a textbook example of how to manipulate properties in crystalline materials and open exciting opportunities for going forward in the field. For instance, one can easily envision a computational screening study of potential A2B’B’’X6 perovskites by using symmetry-based descriptors. Furthermore, it is important to note, that band engineering is a common concept in related areas of materials science, such as thermoelectrics and magnetic materials, and is a common tool for solid state chemists in general. Therefore, it is refreshing to see that band engineering now enters arguably one of the most fascinating developments of materials science within the last decade.

 

Figure 1. Schematic presentation of the orbital overlap (a) and the energy as a function of k for bands of s and p-σ orbitals (b) in a linear chain.

 

[1] F. Wei, Z. Deng, S. Sun, F. Xie, G. Kieslich, D. M. Evans, M. A. Carpenter, P. D. Bristowe, A. K. Cheetham ‘The synthesis, structure and electronic properties of a lead-free hybrid inorganic-organic double perovskites (MA)2KBiCl6 (MA = methylammonium)Mater. Horiz. 2016, 3, 328.

[2] C. N. Savory, A. Walsh and D. O. Scanlon ‘Can Pb-Free Halide Double Perovskites Support High-Efficiency Solar Cells?’ ACS Energy Lett. 2016, 1, 949.

[3] X.-G. Zhao, D. Yang, Y. Sun, T. Li, L. Zhang, L. Yu, A. Zunger ‘Cu-In Halide Perovskite Solar Absorbers’ J. Am. Chem. Soc. 2017, 139, 6718.

[4] T. Thao Tran, J. R. Panella, J. R. Chamorro, J. R. Morey, T. M. McQueen ‘Designing Indirect-Direct Bandgap Transitions in Double PerovskitesMater. Horiz. 2017, DOI: 10.1039/C7MH00239D.

 

Dr Gregor Kieslich is a Liebig-Fellow at Department of Chemistry, Technical University of Munich and is a member of the Community Board for Materials Horizons. He is an inorganic chemist focusing on crystal chemistry and structure–property relations in functional solids and hybrid frameworks: https://kieslichresearch.wordpress.com/

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

A laser “writing” method for easily adjustable and complex 3D structures – a new HOT article

Different 3D structures created

Photographs of different 3D shapes generated from the same stretched Nafion/PDA films treated with a NIR laser with different facular region shapes.

A new and highly adaptable way to make 3D structures in a wide range of different shapes has been reported in a new HOT article, published in Materials Horizons. The technique allows adjustment of both the shape transition process and the final shape at the same time.

The strategy, which Jian Ji’s group at Zhejiang University describe as a “writing” process, uses polymer nanosheets as blank “paper”. These are guided into making specific shape changes with a near infra-red laser beam “pen”. By controlling which shape changes happen at which time, several sheets can be woven together into a complex interlocking structure. Unlike previous techniques, the order of these changes can be easily altered to change the interlocking pattern.

Ji’s group used pre-stretched composite sheets of Nafion, a shape memory polymer, and polydopamine. When a NIR laser was applied to specific parts of the nanosheet, the polydopamine converted the light energy into heat. This caused internal stress between the heated and non-heated parts, triggering a shape transition of the sheet to relieve the stress. Changing the shape or intensity of the laser beam or where it was applied modulated the shape change, giving rise to a huge number of possible shapes.

Because the nanosheets don’t require special pretreatment before forming each particular shape, a variety of shapes can be made from the same starting material in quick succession. The technique could in future be used to make “personalised” components for the healthcare industry.

Read the full article here:
A ‘‘writing’’ strategy for shape transition with infinitely adjustable shaping sequences and in situ tunable 3D structures
Tingting Chen, Huan Li, Zuhong Li, Qiao Jin and Jian Ji
Mater. Horiz., 2016, DOI: 10.1039/C6MH00295A

Susannah May is a guest web writer for the RSC Journal blogs. She currently works in the Publishing Department of the Royal Society of Chemistry, and has a keen interest in biology and biomedicine, and the frontiers of their intersection with chemistry. She can be found on Twitter using @SusannahCIMay.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

HOT article: Thermally reversible full color selective reflection in a self-organized helical superstructure enabled by a bent-core oligomesogen exhibiting a twist-bend nematic phase

Fig. 1 Chemical structure of the bent-core oligomesogen 1 exhibiting different phases

A new helical superstructure that reflects light across the whole visible system has been reported in a new HOT article. The structure can be tuned to reflect light from ultraviolet through to near infra-red, in a wide temperature range. 

Liquid crystals are intriguing materials which have properties of both liquids and crystals. They have found uses in many day-to-day applications, such as flat-screen televisions, but much about them, and the many phases they can exhibit, remain unknown.

Quan Li’s group, at State Kent University, had previously designed a new achiral liquid crystal trimer with a twist-bend nematic phase. In this experiment they doped it into a chiral liquid crystal (CLC) to see what effect it would have. As expected, adding the trimer increased the CLC’s chirality, forming a helical structure. More surprisingly, it also increased the temperature range of the liquid crystal phase, proportionally with the concentration of trimer added. What’s more, the resulting superstructure reflected light across the whole visible spectrum. The specific wavelength reflected could be reversibly tuned by adjusting the temperature, meaning the structure could reflect different colours of light at different temperatures.

The group think that strong molecular interactions between the CLC molecule and rod-like units of the trimer cause the effect. In future the superstructure could be used to make colour-display thermometers, and demonstrates the potential of doped liquid crystal systems in obtaining new fascinating properties.

Read the full article here:
Thermally reversible full color selective reflection in a self-organized helical superstructure enabled by a bent-core oligomesogen exhibiting a twist-bend nematic phase
Yuan Wang, Zhi-gang Zheng, Hari Krishna Bisoyi, Karla G. Gutierrez-Cuevas, Ling Wang, Rafael S. Zola and Quan Li
Mater. Horiz., 2016, DOI: 10.1039/C6MH00101G

Susannah May is a guest web writer for the RSC Journal blogs. She currently works in the Publishing Department of the Royal Society of Chemistry, and has a keen interest in biology and biomedicine, and the frontiers of their intersection with chemistry. She can be found on Twitter using @SusannahCIMay.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)