Author Archive

Earth, wind and the sun = gold?

Graphical Abstract

The precious element gold can exist in various forms, the most thought of probably being the shiny solid treasured for its aesthetic qualities. However, a number of other relevant forms exist not just in the chemistry laboratory but also in nature. Gold in its common oxidation states (I and III) can be found in water sources in the environment at appreciable concentrations. The coexistence of natural organic matter (NOM) and gold dissolved in surface water opens up the possibility for photoproduction of gold nanoparticles (AuNP), a form of gold which displays toxicity towards aquatic organisms and is prone to becoming distributed through the food chain upon ingestion.

In this Environmental Science: Nano paper entitled Aqueous photoproduction of Au nanoparticles by natural organic matter: effect of NaBH4 reduction the authors’ attention is focused on investigating what NOM functionality is involved in AuNP formation, and which mechanism is being facilitated by its presence. Samples of NOM from various sources were included in the study and characterised using their content of carbonyl, quinone and aliphatic functionality. Samples with a large percentage of the former two showed an enhanced ability for AuNP production under simulated sunlight conditions, whereas a large content of the latter afforded inferior performance in this respect. In order to test whether this oxygen-containing functionality was responsibile for the facile production of AuNPs a selective chemical reducing agent, sodium borohydride (NaBH4), was chosen to remove it from the NOM samples. This modification led to Au3+ reduction by NOM being observed, albeit at a much slower rate, which confirmed the importance of the carbonyl functionality and suggested that other functionality in the NOM was ultimately responsible for performing reduction.

One way in which the carbonyl functionality could accelerate the photoreduction process is by acting as a convenient electron source following the absorption of light, with the molecular oxygen/superoxide radical pair acting as an electron shuffle between the NOM and the gold cations. Formation of the superoxide radical on irradiation of NOM solutions was followed using electron paramagnetic resonance both before and after NaBH4 treatment. Elimination of the carbonyl functionality hindered formation of the superoxide radical, however a correlation between superoxide concentration and AuNP formation rate could not be established. To test whether the superoxide radical was involved in the nanoparticle formation process, the enzyme superoxide dysmutase was added. The enzyme efficiently removed the superoxide radical, which led to an expected decrease in rate. These observations helped support the operation of the indirect reduction mechanism, however not to the dismissal of alternatives. Indeed another mechanism which is believed to operate in parallel is based on the charge transfer from the NOM directly to the gold cations in complexes formed between the two (the charge transfer mechanism).

Experiments carried out with model substrates of aromatic ketones and quinones further supported the role that had been ascribed to the carbonyl functionality. Aromatic ketones proved superior over the quinoid model compounds in the generation of nanoparticles, as faster reduction was achieved even at much lower substrate concentration and indicated that NOM quinones played only a secondary role in the production of AuNPs. Noteworthy was the decrease in photoreduction rate observed upon NaBH4 treatment of quinones, which indicated that the resulting phenolic functionality was not responsible for photoreduction as had been previously believed.

Jiahai Ma and co-authors from the School of Chemistry and Chemical Engineering have shaped our understanding for the central role that the aromatic ketone functionality in natural organic matter plays in the photoproduction of gold nanoparticles in the aquatic environment.

Read the full article for free*:

Aqueous photoproduction of Au nanoparticles by natural organi matter: effect of NaBH4 reduction
Zilu Liu, Pengfei Xie and Jiahai Ma
Environ. Sci.: Nano, 2016, Advance Article
DOI: 10.1039/C6EN00126B, Paper

—————-

About the webwriter

Dan Mercea is a PhD student in the Fuchter group at Imperial College London. He is working on developing enantioselective FLP catalysis.

—————-

*Access is free until 24/08/2016 through a registed RSC account – register here

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Introducing our new Associate Editor

We are delighted to introduce Iseult Lynch as a new Associate Editor for Environmental Science: Nano.

Iseult joins Greg Lowry and Kristin Schirmer as Associate Editors handling submissions to the journal.

Iseult Lynch is a physical chemist specialising in understanding the interface between engineered nanomaterials and the environment (biotic and abiotic components) and how this determines their ultimate fate and behaviour.

Dr Lynch has been actively involved in research to elucidate the mechanisms involved in potential toxicity of nanomaterials, including being centrally involved in the pioneering studies regarding the nanoparticle-protein corona, for which she received the US National Academy of Sciences Cozzarelli Prize for 2007 (with her co-authors).

She is currently applying these concepts to assessing nanomaterial behaviour in more complex environments and whole organisms, looking for example at the role of secreted proteins and polysaccharides as well as dissolved organic matter in determining nanomaterials environmental fate, transformation and biouptake. Her expertise spans nanomaterials synthesis, characterisation and environmental interactions (biomolecules, cells, organisms).

———-

Please join us in welcoming Iseult to Environmental Science: Nano.

Iseult has recently published a review in Environmental Science: Nano, read it here.

Interested in the latest news, research and events of the Environmental Science journals? Find us on Twitter: @EnvSciRSC

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Silver nanoparticles lost in the first wash

Scientists in Switzerland have discovered that more silver nanoparticles in clothing are released the first time they are washed than when they are sent to landfill.

Manufacturers add nanosilver to textiles to kill odour-causing bacteria © Shutterstock

Nanosilver’s antimicrobial properties often see it added to textiles, including socks and sportswear. Making, washing and disposing of the clothing can release the silver into the environment. Despite posing a low risk to humans, silver ions are toxic to many aquatic organisms and can accumulate in the food chain.

Commenting on the work, Amro El Badawy, an environmental engineer at California Polytechnic University, US, says:  ‘Deciphering the mechanisms of transformations of nanomaterials under the experimental conditions is key to our ability to predict any environmental implications – this work gets us closer to achieving this goal.’

Read the full ChemistryWorld article here.

Durability of nano-enhanced textiles through the life cycle: releases from landfilling after washing*
Denise M Mitrano, Pawena Limpiteeprakan, Sandhya Babel and Bernd Nowack
Environ. Sci.: Nano
, 2016, Accepted Manuscript
DOI:
10.1039/C6EN00023A

*Access is free through a registered RSC account until 11 May 2016 – click here to register

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

International Conference on Environmental Effects of Nanoparticles and Nanomaterials

We are pleased to announce that registration and abstract submission for the 2016 International Conference on the Environmental Effects of Nanoparticles and Nanomaterials (ICEENN) is now open.

This marks the 11th year of the ICEENN, which  will take place August 14-18th 2016 in Golden, Colorado (USA). The abstract submission deadline is April 18th. To find out more about the meeting, register, submit an abstract, and book accommodation and social activities please visit the conference website.

This conference brings together participants from academia, industry, government agencies, and non-governmental organizations to present and discuss current research findings on environmental health and safety aspects of nanotechnology.

The conference format is that of plenary oral presentations and poster sessions.  Sessions are planned to cover topics that include:

• Advancements in nanomaterial analysis methods
• Surface chemistry of nanomaterials in complex matrices
• Release from consumer products and environmental fate
• In vivo and in vitro toxicology of nanomaterials
• Applications of nanomaterials in environment and health
• Environmental issues of production-scale nanotech
• Social and regulatory considerations of nanotechnology

A 2-day pre-conference workshop on nanoparticle characterization will precede the meeting. A number of social activities are planned. Updates to the website will be posted regularly. August is prime tourism season in Colorado so we strongly encourage you to book your accommodation early.

We look forward to welcoming you in Golden for the 2016 ICEENN!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Environmental Science: Nano winners at ICEENN

Nano 2015 logo

Many congratulations to Olga Zaytseva and Miguel Ángel Gómez González on their poster prize success at the 10th International Conference on the Environmental Effects of Nanoparticles and Nanomaterials, which took place from 6th-10th September 2015 at the University of Vienna, Austria.

As one of the globally leading conferences on environmental nanoscience and nanoecotoxicology, the 10th ICEENN brought together researchers, regulators and industry to discuss the recent advances in the investigations of risks of current and future applications in the key sector of nanotechnology, along with procedures of risk management to maintain the economic and social benefits of the sector. Sessions dealt with key research areas such as analysis of nanomaterials, toxicology and ecotoxicology, and innovation and applications of nanotechnology to environmental issues.

Olga Zaytseva of Hohenheim University, Stuttgart, produced a winning poster entitled ‘Phytotoxicity of multi-walled carbon nanotubes in soybean (Glycine max.)‘, while Miguel Ángel Gómez González of the Spanish National Research Council, Madrid, won with his poster entitled ‘Arsenic speciation in contaminated soils by AF4/SP-ICPMS and XAS techniques: Role of colloids in the mobilization of arsenic‘.

The judges of the prizes thought the quality of the presentations and posters was really high and, from the Environmental Science: Nano team, we would like to thank all the students that attended or presented at the meeting.

For more details on ICEENN 2015 please visit the conference website.

Presentation for the prize winners of ICEENN 2015

Many congratulations on this achievement from the Environmental Science: Nano team

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Top 10 most accessed Environmental Science: Nano articles in June 2015

For June 2015, our most downloaded Environmental Science: Nano articles were:

Haoran Wei, Katia Rodriguez, Scott Renneckar and Peter J. Vikesland
DOI: 10.1039/C4EN00059E

Jared S. Bozich, Samuel E. Lohse, Marco D. Torelli, Catherine J. Murphy, Robert J. Hamers and Rebecca D. Klaper
DOI: 10.1039/C4EN00006D

Haoran Wei, Seyyed M. Hossein Abtahi and Peter J. Vikesland
DOI: 10.1039/C4EN00211C

Man Li, Chengwei Wang, Michael J. O’Connell and Candace K. Chan
DOI: 10.1039/C4EN00204K

David Speed, Paul Westerhoff, Reyes Sierra-Alvarez, Rockford Draper, Paul Pantano, Shyam Aravamudhan, Kai Loon Chen, Kiril Hristovski, Pierre Herckes, Xiangyu Bi, Yu Yang, Chao Zeng, Lila Otero-Gonzalez, Carole Mikoryak, Blake A. Wilson, Karshak Kosaraju, Mubin Tarannum, Steven Crawford, Peng Yi, Xitong Liu, S. V. Babu, Mansour Moinpour, James Ranville, Manuel Montano, Charlie Corredor, Jonathan Posner and Farhang Shadman
DOI: 10.1039/C5EN00046G

Carl Walkey, Soumen Das, Sudipta Seal, Joseph Erlichman, Karin Heckman, Lina Ghibelli, Enrico Traversa, James F. McGinnis and William T. Self
DOI: 10.1039/C4EN00138A

Liqun Ye, Yurong Su, Xiaoli Jin, Haiquan Xie and Can Zhang
DOI: 10.1039/C3EN00098B

Antonia Praetorius, Nathalie Tufenkji, Kai-Uwe Goss, Martin Scheringer, Frank von der Kammer and Menachem Elimelech
DOI: 10.1039/C4EN00043A

Interesting read? Let us know your thoughts below.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Dissolution of electro-spun alumina nanofibers in artificial lung fluids

Alumina (Al2O3) nanofibers have potential applications as catalyst support structures, reaction substrates, filtrations devices and sensors as a result of their high thermal stability. On the other hand, the fibrous nature of these materials calls for extra caution because of their potency to cause pulmonary diseases.

Fiber respirability and durability are among the dominant factors contributing towards the potential toxicity. The aerodynamic diameter controls the respirability while dissolution is related to the durability. A fiber is considered bio-durable if the rate at which it dissolves via chemical dissolution is slower than the rate of physical removal by the lung by mechanical action.

Therefore, Hyeon Ung Shin, Aleksandr B. Stefaniak, Nenad Stojilovic and George G. Chase from University of Akron, National Institute for Occupational Safety and Health and University of Wisconsin Oshkosh has investigated the dissolution of electrospun Al2O3 nanofibers in human artificial lung fluid and free radical generation to determine the influence of physicochemical properties.

These fibers were prepared using different thermal treatments and were characterized extensively for size, surface morphology, crystal structure and surface area. Then dissolution was measured by incubating the fibers in serum ultrafiltrate and phagolysosomal simulant fluid and analyzing the supernatant using ICP-OES at different time intervals. Dissolution rates were calculated assuming constant dissolution velocity:

Where (1-M/Mo) is the mass fraction of material dissolved, t is the time (days), SSA is the specific surface area (cm2g-1) and k is the chemical dissolution rate constant. The free radical generation was probed using electron spin resonance spectroscopy (ESR).

The study has shown no effect of physicochemical properties on the Al2O3 dissolution in artificial human lung fluid indicating the differences in the heat treatments does not affect the solubility within lungs. However, greater dissolution rates were observed for the samples with higher heating ramp rates even though their physicochemical properties were similar. No measurable levels of free radicals were generated by these alumina nanofibers.

To access the full article, download a copy for free* by clicking the link below.

Comparative dissolution of electrospun Al2O3 nanofibres in artificial human lung fluids
Hyeon Ung Shin, Aleksandr B. Stefaniak, Nenad Stojilovic and George G. Chase
Environ. Sci: Nano, 2015, 2, 251-261
DOI: 10.1039/C5EN00033E

—————-

Imali Mudunkotuwa

About the webwriter

Imali Mudunkotuwa is a Postdoctoral Scholar and Research Assistant at The University of Iowa. She is interested in nanoscience, physical and surface chemistry. You can find more articles by Imali in her author archive .

—————-

* Access is free until the 06/10/2015 through a registered RSC account

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)