Archive for the ‘Emerging Investigators’ Category

Emerging Investigator Series: Adrien Mestrot

Adrien Mestrot is Assistant Professor Tenure-Track for Soil Science at the Institute of Geography of the University of Bern (Switzerland). He graduated from the Université de Pau et des Pays de l’Adour (UPPA, France) and obtained his Ph.D. from the University of Aberdeen (UK) in 2011. He then worked with the Soil Science Group at the University of Bern where he received a Marie Curie IEF Fellowship in 2013 and a SNSF Professorship in 2016.

Read Adrien Mestrot’s Emerging Investigator Series article “Mercury mobility and methylmercury formation in a contaminated agricultural flood plain: Influence of flooding and manure addition” and read more about him in the interview below:

Your recent Emerging Investigator Series paper focuses on Mercury mobility and methylmercury formation in a contaminated agricultural flood plain: Influence of flooding and manure addition. How has your research evolved from your first article to this most recent article?

During my PhD at the University of Aberdeen, I studied the biovolatilisation of arsenic from soil and my first paper described a new method to trap, identify and quantify volatile arsenic species. Biovolatilisation and biomethylation of arsenic are intrinsically linked and these two mechanisms are still not well understood. Having gained knowledge on speciation analysis and arsenic transformations in soils, I set out to explore the fate of other trace elements that are redox sensitive and undergo biomethylation and biovolatilisation in soils. I was particularly interested in antimony and mercury. I continued with this line of research as a Marie Sklodowska Curie fellow at the Institute of Geography of the University of Bern, where I could take full advantage of the state-of-the-art laboratory. During this time, I modified, developed and validated extraction and analytical techniques to measure volatile and dissolved forms of these three toxic elements in soils, soil solution and the atmosphere. After the fellowship, I obtained a SNSF Professorship and I more recently became Assistant Professor tenure-track for Soil Science – all in the same institute. I am now able to use these extraction and analysis techniques to understand the drivers behind the formation of these chemical species, while focusing on the effect of climate change (flooding, temperature) and agricultural practices (manure amendments) on the release, biomethylation and biovolatilisation of mercury, antimony and arsenic in soils.

What aspect of your work are you most excited about at the moment?

What currently excites me a lot as a new faculty member is the opportunities that are given to me to talk about the research conducted in my group. I assume people hear that a new person has been appointed and are curious to know more. During the last couple of years I have received several invitations to give talks in other research groups and Federal Offices in Switzerland. This is a great chance for me to tell the bigger story behind the various current projects and provides opportunities for building a diverse professional network in Switzerland.

In your opinion, what are the most important questions to be asked/answered in this field of research?

Generally, soils are seen as sinks for trace elements since these can bind to different soil components such as e.g. iron and manganese (oxy-)hydroxides, clays or organic matter. However, when flooding occurs, trace elements bound to iron and manganese (oxy-)hydroxides are released through a mechanism called reductive dissolution. Once released to the soil solution, the trace elements are available to soil organisms and plants and could be transported to groundwater. Microorganisms can also then take-up these elements and transform them to more toxic (e.g. methylmercury), more mobile or even volatile species. Current global climate predictions tell us that extreme weather events with heavy rains and flooding will become more frequent, thus turning soils into a potential source of trace elements. Therefore, for me, the most important question is about the potential influence of climate change on the release and the speciation of trace elements in soils and if it can influence their global biogeochemical cycle.

What do you find most challenging about your research?

In order to understand and characterise the release, biomethylation and biovolatilisation of trace elements in soils, one must have a very broad set of skills. From soil science to advanced analytical chemistry and a sound understanding of microbial processes. However, this means that collaborations are necessary which is always interesting and an opportunity to extend one’s research horizon.

In which upcoming conferences or events may our readers meet you?

I try to attend as few conferences as necessary, both for family reasons (I have a young son) and to reduce my carbon footprint. I tend to favour conferences that are local or can be reached by train although this is not always possible! Every year I attend the Swiss Geoscience Meeting and every two years there is ICOBTE. Of course I try to go to Goldschmidt as often as possible since it is an important conference in my field. This year I will attend ContaSed, which we are organising in Bern, and Eurosoil, which will be taking place in August 2020 in Geneva.

How do you spend your spare time?

I like gardening and DIY. These are activities that allow me to focus for a few hours on an object or task through a well-defined activity with a start and an end, which is very different from our day-to-day work as scientists. I also love hiking, climbing and spending time with my family and friends.

Which profession would you choose if you were not a scientist?

I would choose to be a science journalist, a science communicator or a managing editor for a journal. I don’t think I would enjoy working in a non-science related job.

Can you share one piece of career-related advice or wisdom with other early career scientists?

My advice for early career researchers is to take part in the different commissions of your institution and become a representative for your peers (e.g. PhD or postdoc representative). It will allow you to network with more senior members of your institutions (lecturers, professors etc..) while contributing to shape your place of work and potentially your university and beyond. In my opinion, the most pressing issues to be addressed in research include improving gender equality, work-life balance and sustainability.  I think that early career researchers and newly appointed faculty members have strong leverage to push forward the required changes in academia.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series: Case van Genuchten

Case van Genuchten received a B.Sc. in 2008 from San Diego State University and a M.Sc. (2009) and Ph.D. (2013) from the Civil and Environmental Engineering Department at the University of California, Berkeley.  Following his Ph.D., Case van Genuchten spent two years as a post-doctoral researcher in the Environmental Geochemistry Laboratory at the University of Lausanne (CH). He then received a prestigious Veni grant for young researchers from the Applied and Engineering Sciences Division of the Dutch Organization for Scientific Research. As part of this grant, he spent three years at Utrecht University in the Netherlands investigating mixed-valent Fe(II,III) (hydr)oxides generated by Fe(0) electrolysis as a decentralized method of arsenic treatment. The major question driving Case van Genuchten’s research involves how nano- and sub-nanoscale processes, including mineral dissolution/precipitation, ion sorption, and electron transfer, govern the transport and bioavailability of major elements (P, Ca, Si) and toxic trace contaminants (As, Pb, Cd).  Specifically, he is interested in applying wet-chemical methods and advanced synchrotron-based characterization techniques to generate fundamental knowledge that can be applied in the design of water and soil remediation strategies, particularly in decentralized, resource-scarce communities. Currently, Case van Genuchten is a researcher in the Geochemistry Department of the Geological Survey of Denmark and Greenland (GEUS).

Read Case van Genuchten’s Emerging Investigator Series article “Interdependency of Green Rust Transformation and the Partitioning and Binding Mode of Arsenic” and read more about her in the interview below:

Your recent Emerging Investigator Series paper focuses on the Interdependency of Green Rust Transformation and the Partitioning and Binding Mode of Arsenic. How has your research evolved from your first article to this most recent article?

From the beginning of my career, I have been interested in designing water treatment technologies particularly for resource-scarce and marginalized communities. My first series of articles focused on developing an electrochemical method of removing arsenic from contaminated groundwater used as a source of drinking water in South Asia, where millions are suffering from arsenic poisoning. This method is based on the electrolytic dissolution of steel electrodes to generate reactive ferric oxides that bind arsenic effectively. In the years since these first publications, we learned that by simply changing the way electric current is applied to steel electrodes (i.e. a lot of current over a short time, rather than a small current over a long time), different phases of iron oxides can form, such as green rust. Green rust is a mixed valent iron oxide that contains both ferrous and ferric iron and has unique redox and sorption reactivity, but can transform rapidly into other types of iron oxides because it is relatively unstable. The Emerging Investigator Series article determines how structural transformations of green rust alter the dissolved arsenic concentration in water – some green rust transformations increase dissolved arsenic, others beneficially decrease it. The ultimate goal of this work, and one of the general themes of my research since my Ph.D., is to gain knowledge to improve arsenic remediation strategies in a variety of environmental and socioeconomic conditions.

What aspect of your work are you most excited about at the moment?

In the last year, I have been spending a lot of time thinking about sustainable methods of managing arsenic-laden waste that is generated as a by product of treating arsenic contamination. This idea is briefly mentioned in the discussion section of the Emerging Investigator Series article in the context of separating arsenic from the green rust for further processing of the material. All arsenic treatment methods produce arsenic-rich waste and currently there is no real sustainable method of managing this material. Currently, the most common disposal strategy for arsenic-rich waste is landfilling, which is economically and environmentally unsustainable. What excites me most about my current and future work is trying to develop a series of chemical, electrochemical, and biological techniques that can recover resources for arsenic-rich waste and enable a circular economy for this carcinogenic material.

In your opinion, what are the most important questions to be asked/answered in this field of research?

One of my primary research interests is in developing appropriate technologies for poor, decentralized communities that lack infrastructure. In this field, one of the most urgent and important questions is how to best design technologies that address technical challenges while fitting within the socioeconomic and cultural constraints of the affected community. In other words, how can we integrate the technical expertise of engineers and practitioners with the cultural and economic understanding of the affected community gained by social scientists, economists, NGOs, and local community leaders to ensure sustained engineered solutions? The ongoing crisis of naturally occurring arsenic contamination of groundwater used for drinking in South and Southeast Asia is a timely example of how solving complex problems that affect marginalized populations requires a multidisciplinary approach. Research in this field, which has been called Development Engineering or Humanitarian Engineering, is beginning to show the importance of coordinating technical solutions with the socioeconomic and cultural characteristics of the end user, but I think this field is still in its infancy and there are many opportunities for new ideas.

What do you find most challenging about your research?

I think the answer to this question relates to the previous one.  Although I will always be excited to apply synchrotron-based X-ray methods to determine the molecular-scale underpinnings of remediation strategies, as is the focus of this article, what I find both challenging and motivating is applying this detailed information to improve real world solutions.  It is not always straightforward to translate results from small-scale experiments in controlled laboratory conditions to practical knowledge that can be used by technology practitioners.  I hope I can get better at this in the future!

In which upcoming conferences or events may our readers meet you?

In 2019, I will be attending the Geochemical Society’s Goldschmidt conference in Barcelona, Spain. In 2020, I will be heading to the ISGSD International Congress on Arsenic in the Environment in Utrecht, the Netherlands and the IWA World Water Congress in Copenhagen, Denmark.

How do you spend your spare time?

I guess I am still kind of a kid when it comes to spare time. I grew up in Southern California and spent a lot of time surfing and snowboarding, but I live in Copenhagen now so it is a bit more difficult to keep this up. Still, I try to go on as many surf and snowboard trips as I can. I also still skateboard a lot and Copenhagen is a great place to keep that up. The other activities I like to do are a bit more standard: hiking, barbecuing, and watching movies and baseball with my partner, Sofie.

Which profession would you choose if you were not a scientist?

Hmmmm… That is tough. I haven’t thought about that since I was a teenager. I guess getting paid to surf would be an amazing life, but maybe doing that as a job would end up making it less fun than doing it as a hobby. I have been hooked on true crime media lately. Perhaps it is the kind of “Hollywood” way that the shows are produced, but the ways in which the detectives solve some of these unbelievable crimes is super interesting and the approach seems to consist of some scientific aspects. So maybe I’d try to be a crime-solving detective?  Except detective van Genuchten doesn’t really have a good ring to it.

Can you share one piece of career-related advice or wisdom with other early career scientists?

I think the advice I would give would differ for the different stages of early career scientist. For someone in a Ph.D. program, I would say it is really important that you are motivated by the project rather than by other external factors. Before I started my Ph.D., I asked myself if I would be happy working in the field of my project for ten years even though the Ph.D. should take less than half that. The reason is that learning to do research is difficult and there are many struggles that all Ph.D. students face. If you are not motivated by the project, it can be easy to lose focus and give up. For someone beginning a post-doc, I would say that it is important to continue to learn and ask questions and to not be afraid to try new things and apply your skills in different environments. I have a lot of good memories of my post-doc at the University of Lausanne (Switzerland) and I think it was due partly to the stronger sense of independence and freedom I had. For someone entering a tenure-track position, I think my advice would be that since you have made it this far already, try to not worry too much about the future and enjoy the present as much as you can.  At any career stage beyond that, I cannot give too much advice because I am not there yet. However, perhaps my kind of sarcastic, tongue-in-cheek advice for more senior scientists would be to not forget what being a Ph.D. student was like.  It is difficult to learn to be a scientist, so try not to be too hard on the students.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series: Tara Kahan

Tara Kahan in the lab

Tara Kahan obtained a B.Sc. in chemistry from the University of Regina and a PhD in environmental chemistry from the University of Toronto. Following postdoctoral fellowships at the University of California Irvine and the University of Colorado Boulder, Tara joined the chemistry department at Syracuse University as an assistant professor in 2012, and she is now an associate professor and Canada Research Chair in Environmental Analytical Chemistry in the chemistry department at the University of Saskatchewan. Tara investigates poorly-understood reactions that affect environmental and human health, with a focus on two distinct themes: reactions of pollutants in water, snow, and ice; and indoor chemistry.

Read Tara Kahan’s Emerging Investigator Series article “Spatial distribution of dissolved organic matter in ice and at air-ice interfaces” and read more about her in the interview below:

Your recent Emerging Investigator Series paper focuses on microspectroscopy of organic solutes at ice surfaces. How has your research evolved from your first article to this most recent article?

My research group’s first article was published 5 years ago. That paper showed that organic matter can greatly alter pollutant photolysis rates in ice, even if the organic matter doesn’t itself absorb sunlight. That was an exciting paper for me, both because it was my first, and also because it set the stage for a major research direction in my group: Investigating reactivity in “dirty” ice. This current article focuses on the same major theme, but has a very different approach. We’ve recently expanded our repertoire so that in addition to measuring reaction kinetics at ice surfaces we can characterize physical and chemical  properties of ice surfaces using Raman microscopy. I’m very excited to pursue this new research direction, and to use Raman microscopy to better understand heterogeneous atmospheric reactions.

What aspect of your work are you most excited about at the moment?

My favourite part of research is discussing ideas with other people, and especially with group members. So I tend to feel most excited about whatever is currently in front of me. Right now that is Raman microscopy work. (Plus, it’s really exciting to think about all of the research directions that we could pursue with this technique.) But I know that when group members come to me with results in other areas (reaction kinetics in water and ice, indoor chemistry) I will be just as excited about those.

In your opinion, what are the most important questions to be asked/answered in this field of research?

In the area of ice chemistry, I think that a big issue is the difficulty in effectively using fundamental properties (e.g., rate constants, partitioning coefficients) determined from laboratory measurements to improve our understanding of observations made in the field. Part of the issue is that there just aren’t that many laboratory measurements in ice or at ice surfaces (compared to, for example, in liquid water). Another issue is that the atmosphere is very complex and “messy”, and laboratory experiments made under necessarily simplified conditions may yield results that are difficult to translate to the real world. I hope that our research on solute-containing ice will help to bridge this gap. I think that the most important thing is to continue bringing together researchers in different areas (laboratory, modelling, and field observations) to discuss capabilities, needs, and potential synergies and collaborations.

What do you find most challenging about your research?

My biggest challenge isn’t with my research itself, but with navigating the role of “principal investigator”. I have struggled with balancing the many demands on my time (teaching, service, grant-writing, the administrative duties of running a lab, advising group members) that I did not have as a graduate student or postdoctoral researcher. Over the years I have gotten better at carving out time to focus exclusively on research, but it never feels like enough.

In which upcoming conferences or events may our readers meet you?

I will be presenting at the 2019 American Chemical Society (ACS) Fall Meeting in August and at the Society for Environmental Toxicology and Chemistry (SETAC) meeting in November.

How do you spend your spare time?

Wrangling my toddler, mostly. That aside, we love being outside, and try to take advantage of the many wonderful parks, lakes, hiking trails, etc. within driving distance of our home.

Which profession would you choose if you were not a scientist?

My passions have always leaned toward the creative side. If I didn’t end up as a scientist, I might have pursued writing, or music (clarinet), or art. I decided on science because I figured that chemistry is harder to do as a hobby.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Two things helped me a lot pre-tenure. The first was being part of a peer mentoring network. This was a group of 10 women science faculty who met every other week to discuss topics related to our careers. The structured meetings were based on the book Every Other Thursday by Ellen Daniell. We found this group incredibly helpful in dealing with issues (e.g., related to teaching, mentoring, navigating university politics) and clarifying and achieving our goals. I encourage junior faculty to set up a similar group, and I am always happy to answer questions or give guidance on this – the support I received was so helpful that I want everyone to experience it! (And to note, this is not only useful for junior faculty – I know of groups set up by postdocs and graduate students, as well as a group by senior women faculty).

The second thing I found helpful was limiting the time I put into my work. We can always do more, and it’s hard to feel as though we’re doing enough. I decided early on that if I couldn’t get tenure while still enjoying my job and my life, then tenure wasn’t worth it. That thought has alleviated guilt I would otherwise feel about taking time for me and my family. I’m sure I could have been a bit more productive if I had forced myself to work more, but I would have been much less happy. I want to love my job forever, and my approach will help me do that. Everyone’s idea of balance will be different, but I think that understanding what that is and consciously working to achieve it is important for long-term happiness and success.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series: Sarah Jane White

Sarah Jane White studies the biogeochemical cycling of metals that are critical in emerging energy technologies but whose environmental behavior and impacts remain largely unknown. She is interested in metal transport and speciation in natural ecosystems, and its intersection with contaminant fate & transport, industrial ecology, and human health. Sarah Jane received her doctoral degree in Environmental Chemistry from MIT, and her bachelor’s degree in Chemistry from Princeton University. She held positions as a Postdoctoral Fellow and Research Associate at the Harvard School of Public Health while doing multidisciplinary research as an NSF Science, Engineering, and Education for Sustainability Fellow. She continued her research and taught in the Environmental Studies Program as a Visiting Associate Research Scholar at Princeton University before joining the U.S. Geological Survey as a Research Chemist in 2017. Presently Sarah Jane’s research focus is the cycling of indium, gallium, and germanium during the mining and processing of zinc ores (of which they are a byproduct), with a goal of understanding the full life cycle of these elements from ore formation, through mining and processing, to their subsequent behavior and potential health impacts when released to the environment.

Read Sarah Jane White’s Emerging Investigator Series article “atmospheric cycling of indium in the northeastern United States” and read more about her in the interview below:

Your recent Emerging Investigator Series paper focuses on atmospheric cycling of indium. How has your research evolved from your first article to this most recent article?

My first published article was about what causes Candida albicans, a typically-benign yeast that everyone has in their bodies, to switch to a virulent form that can cause significant problems in immunocompromised people.  That paper was a result of work that I did as a lab technician – my first job out of college.  After doing an undergraduate thesis in environmental chemistry, and not having taken any biology courses in college, I serendipitously had the opportunity to work in a molecular biology lab, and knew that the opportunity to better understand biology would enhance the environmental science that I was hoping to do in the future.  After that, I went back for a PhD in environmental chemistry, where I focused on contaminant fate and transport – for which biology is immensely important!  As my research interests have expanded even further to include human exposure to metals and subsequent impacts on health, this biology experience has proven invaluable. Now my work focuses on the environmental and anthropogenic cycling of elements like indium, that are critical to new energy technologies but whose environmental behaviors and human health impacts are poorly understood.

What aspect of your work are you most excited about at the moment?

I have recently begun doing some synchrotron-based x-ray absorption work to determine the speciation of germanium in mine wastes.  It has been exciting to learn a new technique that has powerful implications for understanding the mobility, bioaccessibility, and potential for recovery of a critical element from mine wastes.

In your opinion, what are the most important questions to be asked/answered in this field of research?

There are a dizzying number of chemicals and metals that we are exposed to on a daily basis, many of which have poorly characterized toxicity and environmental behavior.  I believe that it is essential for researchers to not only study the behavior and toxicities of these elements and compounds, but also find ways to predict their characteristics to protect human and organismal health.

What do you find most challenging about your research?

Juggling multiple projects at once, and finding sufficient time to invest in all of them.

In which upcoming conferences or events may our readers meet you?

I just returned from a workshop on the environmental behavior of technology-critical elements in Croatia, and don’t have conference travel planned until likely the AGU Fall Meeting in December.

How do you spend your spare time?

I spend most of my non-working time with my husband and two young kids.  We like to go on bike rides, hit wiffle balls in the backyard, play music, garden, go to farmers’ markets…

Which profession would you choose if you were not a scientist?

Baseball radio announcer?  Violin maker?  Physical therapist?

Can you share one piece of career-related advice or wisdom with other early career scientists?

Research is worthless unless people know about it.  For me, this means working to overcome perfectionist tendencies so that my work is published, even if not perfect.

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series: Shantanu Jathar

Shantanu Jathar is an Assistant Professor in Mechanical Engineering and also an affiliate of the Energy Institute at Colorado State University. He leads the Laboratory for Air Quality Research (http://tinyurl.com/aerosol-csu) that performs research at the intersection of energy and the environment. By leveraging laboratory and field experiments and regional air quality models, his group studies the atmospheric evolution and properties of air pollutants arising from energy and combustion systems, all in the interest of addressing future energy and environmental policy. He has a Ph.D. from Carnegie Mellon University where he used numerical models and laboratory experiments to understand the atmospheric formation of organic aerosols from combustion sources. He worked as a post-doctoral scholar at the University of California, Davis where he worked on improving the treatment of particulate matter in air quality models used for regulatory purposes. Shantanu hails from the suburbs of Mumbai, India. He is married to Poorva (an electrical engineer) and is enjoying parenthood with two energetic sons. In his spare time, he likes to run, bike, hike, and play the bansuri (bamboo flute).

Read his latest Emerging Investigator Series “Oxidative Potential of Diesel Exhaust Particles: Role of Fuel, Engine Load, and Emissions Control” and find out more about him in the interview below:

Your recent Emerging Investigator Series paper focuses on oxidative potential of diesel exhaust particles and the role of fuel, engine load, and emissions control. How has your research evolved from your first article to this most recent article?

My first project, as a graduate student at Carnegie Mellon University nearly a decade ago, examined the influence of an updated treatment on the global distribution of organic fine particles in a climate model. This study was motivated by the need to reduce the large uncertainties linked to fine particles in climate models. Over the years, my research interests have broadened to think about the impacts of fine particles on human health. In this study, we probed how the oxidative reactivity (proxy for toxicity) of particles generated by a modern-day diesel engine varied as we changed the fuel and engine operation. We found that biodiesel and the use of an emissions control device (particle filter) significantly lowered the oxidative reactivity of diesel exhaust particles and we suspect that the reduced oxidative reactivity might be from lower soot emissions. Our work provides some evidence that wider adoption of biofuels and stricter regulations on diesel vehicles may reduce their harmful impacts on human health.

What aspect of your work are you most excited about at the moment?

It has to be wildfires. Wildfires are a growing concern in the western United States as rising temperatures have been linked to more frequent and bigger wildfires. Unlike burning fossil fuels in a controlled environment (think of the internal combustion engine), the variability in fuel and environmental conditions under which fires burn results in large variability in their emissions. As a result, there are large uncertainties surrounding the atmospheric evolution and impacts from wildfire emissions. We have a project supported through the National Oceanic and Atmospheric Administration (NOAA) where we are studying the atmospheric evolution of wildfire emissions in a controlled environmental chamber and using computer models trained on the laboratory data to predict the evolution in real wildfire plumes.

In your opinion, what are the most important questions to be asked/answered in this field of research?

Fine particles when inhaled deposit in our respiratory system and have been linked to lung and cardiovascular disease. However, little is understood about what properties of the particle — defined by their size and composition — are responsible for those diseases and how they might affect different individuals over different periods of time. This, I believe, is an open question and we are not going to figure the answer to this anytime soon.

What do you find most challenging about your research?

Very broadly, I study the sources and impacts of air pollution arising from energy and combustion sources. What I find most challenging with this research area is to keep abreast of the breadth and depth of topic areas it encompasses: physics, chemistry, biology, mathematics, engineering, statistics, public health, and more. Thankfully, the vastness is humbling and I rely on collaborations with some very smart people at Colorado State University and elsewhere to bring their expertise to the topic.

In which upcoming conferences or events may our readers meet you?

I usually don’t miss the annual American Association for Aerosol Research Conference (AAAR), which will be in Portland, OR this year in October. It’s the perfect place to get my scientific fix for fine particle research and catch up with collaborators and colleagues.

How do you spend your spare time?

My wife and I have a 5.5 and a 1.5 year old and we like to spend as much time as we can get with them when we are not working. Summers are the best because we spend a lot of time outdoors hitting the trails and pools.

Which profession would you choose if you were not a scientist?

I have thought about this question a lot and my answer hasn’t changed in a while. I would like to host and produce a science radio show, similar to Radiolab, that mixes physical and social sciences with personal stories. The one thing I would do differently would be to focus on geographies, cultures, and topics relevant to the developing world.

Can you share one piece of career-related advice or wisdom with other early career scientists?

The one thing I would tell early-career scientists is that don’t take any advice (including this one!) too seriously. Listen, but forge your own path. Don’t be afraid to make mistakes and don’t hold any regrets.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series – Karen Dannemiller

Karen C. Dannemiller, PhD is an Assistant Professor at Ohio State University with a joint appointment in Civil, Environmental, and Geodetic Engineering and Environmental Health Sciences. She also has a courtesy appointment in Microbiology. At Ohio State, she leads the Indoor Environmental Quality (IEQ) (https://ieq.engineering.osu.edu/) group and studies the indoor microbiome and indoor chemical exposures. In 2017, she was awarded the Denman Distinguished Research Mentor Award.

Prior to her current position, Dr. Dannemiller graduated with honors in Chemical and Biochemical Engineering from Brown University and earned her MS, MPhil, and PhD at Yale University in Chemical and Environmental Engineering. During this time, she completed an internship at the California Department of Public Health in the Indoor Air Quality Program. She was also a Microbiology of the Built Environment Postdoctoral Associate at Yale University

Read Karen Dannemiller’s Emerging Investigator article “Degradation of phthalate esters in floor dust at elevated relative humidity” and find out more about her in the interview below:

Your recent Emerging Investigator Series paper focuses on the degradation of phthalate esters in floor dust at elevated relative humidity. How has your research evolved from your first article to this most recent article?

This paper has really allowed my work to come full circle.  My first research paper was on formaldehyde in the indoor environment, which was based on my work in the chemical engineering department at Brown University as an undergraduate.  During my PhD, I began to focus more on microbial exposures in the indoor environment.  This Emerging Investigator Series paper is so exciting because it combines my interest in both indoor chemistry and indoor microbiology by examining the interactions between these two systems.

What aspect of your work are you most excited about at the moment?

I direct the Indoor Environmental Quality Laboratory at Ohio State University, and I am excited about all the applications that we are discovering to which we can apply our research. It is so critical to understand the chemical and microbial processes occurring in the indoor environment, and this has important implications in many different systems.  These processes can be particularly important in influencing exposures of vulnerable populations, such as asthmatic children.  We also need a thorough understanding of chemical and microbial interactions in specialized, sensitive systems such as on the International Space Station.  I am most excited to have received grants from NIH, NASA, the Alfred P. Sloan Foundation, and other organizations to study these interactions.

In your opinion, what are the most important questions to be asked/answered in this field of research?

Right now, very little is known about the interactions between chemicals and microbes in the indoor environment.  There are a plethora of questions that need to be asked to gain even a basic understanding of what is happening around us on a daily basis.  These may have important implications for our health.

What do you find most challenging about your research?

One of the most challenging but also exciting aspects of my research are the unexpected surprises inherent in any scientific dataset, but especially rich microbial datasets.  Often, future grant proposals can result from novel associations discovered during data analysis.

In which upcoming conferences or events may our readers meet you?

The next conference I will attend will be AEESP in Tempe, AZ, May 14-16, 2019.  I am very excited to be giving the plenary talk on Thursday morning.

How do you spend your spare time?

I love spending time with my family.

Which profession would you choose if you were not a scientist?

If I were not a research scientist, I would be an environmental public health practitioner.  They apply scientific principles to help people reduce their harmful exposures.  I appreciate the hard, challenging work that they do everyday, especially in fields like mold remediation.

Can you share one piece of career-related advice or wisdom with other early career scientists?

I have been very lucky and very thankful to have some outstanding mentors throughout my career.  I would highly recommend that early career scientists find mentors to help them navigate different obstacles they may encounter.  Mentors are a great source of advice and inspiration.  They can also help you identify exciting opportunities

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series: Elliott Gall

Dr. Elliott Gall is an assistant professor at Portland State University in the department of Mechanical and Materials Engineering. Dr. Gall’s research and teaching seeks to improve the sustainability of the built environment through an understanding of the intersection of indoor air quality, urban air pollution, and human exposure to air pollutants. Research areas include: i) laboratory and field studies of air pollutant transport and transformation, ii) air pollution exposure assessment through modeling and personal exposure studies, and iii) evaluation of building technology and design with respect to indoor environmental quality. Active research includes application of chemical ionization – time of flight – mass spectrometry to the study of indoor environments; a current focus is measurement of source, sink, and transformation processes from traffic related air pollution, wildfire emissions, and wood stove heating emissions. Dr. Gall is also studying the fate and transport of indoor ozone and other oxidants; he was acknowledged with the 2018 Yaglou Award from the International Society for Indoor Air Quality and Climate for his work on indoor ozone chemistry. Finally, an ongoing research area investigates and critically evaluates the impact of vegetation, e.g., green roofs and houseplants, on indoor and urban air quality.

Previously, Dr. Gall received a B.S.E in Environmental Engineering from the University of Florida, an M.S. degree in Environmental & Water Resources Engineering from the University of Texas, and his Ph.D. in Civil Engineering from the University of Texas. From 2013 to 2016, he was a postdoctoral researcher in Singapore as part of a joint research program between UC Berkeley, NUS, and NTU, where he studied indoor air quality of buildings in tropical climates. He has authored or co-authored nearly thirty peer-reviewed journal publications. His work at Portland State has been featured in local and national media, including The Atlantic, the Willamette Week, Oregon Public Broadcasting, and he has been interviewed on the nationally syndicated Top of Mind radio program. More information can be found at his lab group website, www.pdx.edu/green-building or on twitter @etgall

Read Elliott Gall’s Emerging Investigator article “Primary emissions, ozone reactivity, and byproduct emissions from building insulation materials” and find out more about him in the interview below:

Your recent Emerging Investigator Series paper focuses on primary emissions, ozone reactivity, and byproduct emissions from building insulation materials. How has your research evolved from your first article to this most recent article?

The major evolution from some of my earlier work is the analytical methods my lab uses in this study. We designed these experiments to be similar in scope to prior work testing building materials because we’re integrating a proton transfer reaction – time of flight – mass spectrometer (PTR-TOF-MS) into the effort. A major focus of my start-up at Portland State has been learning chemical ionization mass spec with an Ionicon PTR-TOF-MS, with which we have also been working with multiple ionizing reagents. This research was the first major, research-grade study that we conducted with the instrument. Prior to that, the lab team and I spent a great deal of time learning, reading, and running preliminary tests. It’s been a fascinating, and at times, frustrating, journey learning time of flight-mass spectrometry. With this effort completed, and more broadly our increasing capability with TOF-MS, I’m excited about where we can continue contributing to the field.

What aspect of your work are you most excited about at the moment?

Our work with time of flight-mass spectrometry, and the general trend towards real-time measurements in the field, is exciting. The ability to see information on the gas and particle species in air in real-time has been fascinating and, I think, will really enable important new approaches both in field and lab studies. I’m hopeful that we can use the dynamic information from our PTR-TOF-MS to both better understand physics and chemistry of indoor spaces and to develop automated, high-throughput methods that will let us scale out test matrices to include many more samples and with better replication. I’m also excited about bridging indoor and outdoor air quality issues. There’s been a general increase in attention to indoor air quality in the past decade or so, which is leading to exciting new developments in the field.

In your opinion, what are the most important questions to be asked/answered in this field of research?

I believe establishing better understanding of health effects associated with exposures to indoor sources air pollution would drive better research questions as well as enable better actions to be formulated and recommended or incorporated into building code. Understanding indoor air pollutant levels and dynamics is one part of this, but it will require more collaboration with health scientists and funding for larger-scale studies than have been conducted to date.

I also think better understanding of indoor air pollutant cycling, over short and long time frames, will improve understanding of air pollution exposures and also other routes of exposures like dermal uptake. There are high surface area to volume ratios indoors. There exist many knowledge gaps in understanding how these surfaces interact with indoor air and may act as reservoirs for air pollutants, or as transformation pathways, especially for their role in indoor reactions of nitrogen containing compounds and impacts on indoor radical species.

What do you find most challenging about your research?

Indoor air studies (and air quality studies in general) are characterized by a very complex matrix of gas and particle-phase pollutants. Since I started at PSU, a majority of our research effort has been focused on developing lab capabilities to measure things (e.g. organics via the PTR-TOF-MS) in that matrix. We’ve set up the lab to a point where we can measure a range of key parameters of interest: particle size distributions, some approaches for particle composition, and organic and inorganics in the gas-phase. Especially given my position in a Mechanical Engineering department, there’s often student interest and excitement for development of automation, instrumentation, and other tools. The field as a whole has obviously made really important advancements in our understanding of air quality due to improvements in instrumentation. Collecting data is central to what we do, but I’d like to ensure we keep a balance of learning and incorporating methods for data generation and collection while not losing sight of designing studies for generalizable, lasting, and impactful knowledge. Part of that is accepting that you will likely never have all the information you want. I try to keep a sense of humor about the somewhat famous quote “All science is either physics or stamp collecting”, and use it as little reminder to try and think about what kind of information a particular effort is going to yield.

In which upcoming conferences or events may our readers meet you?

I’ll be at AAAR in October 2019 in Portland, OR and I plan to attend Indoor Air in Seoul in 2020.

How do you spend your spare time?

My wife and I were thrilled to be able to move to the Pacific Northwest for my work at Portland State. We spend our free time hiking and camping in all the fantastic mountains, coasts, and deserts that the area has to offer. The mountain biking opportunities in the area are world-class, and coming from Florida and Texas, I’ve been able to improve a lot as a mountain biker. While summer is a great time to get research done, the perfect weather (outside of our recent spate of wildfires) make it way too alluring to get outside. I’ve been kicking around an indoor air quality in camping tents study in my head as an excuse to bridge work and fun.

Which profession would you choose if you were not a scientist?

I can’t get enough time on a mountain bike, but I’ve also always been pretty cautious person, so I don’t think anyone would pay to see such unexciting riding – but maybe a guide or trainer? More likely, if I wasn’t a scientist I would probably pursue advocacy related to the environment and conservation – maybe cycling-based urban planning. So many win-wins (including for air quality!) if we could redesign our cities around bikes instead of cars.

Can you share one piece of career-related advice or wisdom with other early career scientists?

It’s an obvious one, but being active and intentional about time management. What you choose to spend your time on impacts every aspect of your career, and inevitably also much of your personal life. There’s no one-size-fits all answer to this, but in my opinion, it’s important to give time management consideration on a daily basis regarding tasks at hand, but also to dedicate time to for bigger picture thinking on a regular basis. It took me some time to appreciate just how long lead time initiating new research can be, and so what you do day to day now can impact what you will be working on years from now, who you are collaborating with, etc. Giving this thought regularly has helped me focus and be more effective, and also with that all too difficult task of declining opportunities, to ensure I’m working on things that I think will be productive and meaningful.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series – Akane Yamakawa

Akane Yamakawa completed her undergraduate studies at Kobe University, and graduate studies (master) at University of Tokyo, and PhD at Okayama University, Japan. Under the supervision of Dr. Katsuyuki Yamashita, she developed chemical separation of transition metals, and highly sensitive Cr isotopic measurement in meteorites using thermal ionization mass spectrometry. She spent one and a half years as a postdoctoral position, CO with Dr. Qing-zhu Yin in UC Davis at Geology Department. She is now a senior researcher at National Institute for Environmental Studies (NIES), Tsukuba, Japan, working in Fundamental Analytical Chemistry Section of Center for Environmental Measurement and Analysis. Her current researches focus on using isotope geochemistry to better understand emission sources and atmospheric behavior of mercury using Hg isotope, emission sources of long-range transport of particulate matter using Pb isotope, fish ecology using Sr isotopic measurement of otolith, etc. She also involves a project to create environmental reference materials at NIES.

Read Akane Yamakawa’s Emerging Investigator Series article “Investigation of Mercury Emission Sources Using Hg Isotopic Compositions of Atmospheric Mercury at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS), Japan” and read more about her in the interview below:

Your recent Emerging Investigator Series paper focuses on Mercury Emission Sources Using Hg Isotopic Compositions of Atmospheric Mercury. How has your research evolved from your first article to this most recent article?

I started my carrier as a Cosmochemist. I studied about the early evolution of solar system by Cr isotopic measurement of various meteorites. I learned all manners about research from Dr. Katsuyuki Yamashita, Okayama University. After postdoc, I extended my research field to geochemistry and environmental chemistry. Although the research fields are largely different, research philosophy does not change. About atmospheric mercury research, my previous paper is focusing on methodology of Hg isotopic measurement of gaseous elementary mercury, and I applied the method to this most recent article.

What aspect of your work are you most excited about at the moment?

I like to develop and use new techniques. I recently stayed at University of Pau, and learned highly sensitive Hg isotopic measurement. I was lucky to learn the cutting edge technology in this field.

In your opinion, what are the most important questions to be asked/answered in this field of research?

Environmental dynamics of mercury. Especially the interrelationship between atomic mercury and reactive mercury, and the mechanism of methylation-demethylation.

What do you find most challenging about your research?

In order to understand environmental dynamics of mercury, it is essential to have discussions with experts in various fields, and I have to identify my role. Hg isotopic measurement will be a tracer to understand environmental dynamics of atmospheric mercury. It requires many analytical challenges to assure the quality of the research.

In which upcoming conferences or events may our readers meet you?

I plan to present my resent work at AGU Fall Meeting 2019 (San Francisco).

How do you spend your spare time?

I love to spend my time with family. I especially like to play with my dogs. They make me smile. I also enjoy playing and watching tennis when I have spare time.

Which profession would you choose if you were not a scientist?

I have not thought about this question… Maybe tennis player…?

Can you share one piece of career-related advice or wisdom with other early career scientists?

Find your mentor or advisor. I was fortunate to meet Dr. Yamashita at undergraduate research project. He had many interesting collaboration works, and led me to participate in some researches. Although I was such like a C grade student, he did not give up teaching. If you find a wonderful mentor or advisor at an early stage of your career, he/she will bring you nice projects with nice collaborators. All you need to do is show your enthusiasm and effort, and keep your motivation high.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series: Laura Carter

Laura Carter is a University Academic Fellow at the University of Leeds, UK. Laura’s research focuses on understanding the fate and uptake of emerging contaminants in the natural environment, with particular focus on soil-plant systems.  Since completing her PhD at The University of York, Laura has spent time as a Risk Assessor at Unilever’s Safety and Environmental Assurance Centre (SEAC) and as a Postdoctoral Research Fellow at the Commonwealth Scientific Industrial Research Organisation (CSIRO) in Adelaide, Australia where she investigated the biological effects of pharmaceutical uptake into plants. From 2016 – 2018 Laura worked as a Postdoctoral Researcher at the University of York, UK where she contributed to the European iPiE project on the intelligent assessment of pharmaceuticals in the environment, developing soil sorption models and monitoring pharmaceuticals in river catchments. At the University of Leeds, Laura is currently working on projects to increase our understanding of the effects of pharmaceuticals on soil and plant health.

Read Laura’s Emerging Investigator article “Towards a framework for establishing the impacts of pharmaceuticals in wastewater irrigation systems on agro-ecosystems and human health” and find out more about her in the interview below:

Your recent Emerging Investigator Series paper focuses on the impacts of pharmaceuticals in wastewater irrigation systems on agro-ecosystems and human health. How has your research evolved from your first article to this most recent article?

The first publication from my PhD centred on exploring the role of chemical fate in the uptake of pharmaceuticals by plants. This involved pot experiments to consider the sorption, persistence and bioavailability of pharmaceuticals in soil systems and the influence of this on plant uptake. My research then moved on to explore the factors and processes, which control the fate and uptake of pharmaceuticals in terrestrial systems including the potential for pharmaceuticals to induce sub-lethal toxicity. Our recently published article takes a more holistic approach to considering pharmaceutical exposure in agro-ecosystems accounting for the complexity and connectivity between different sources and receptors. The proposed framework allows us to begin to piece together individual research outputs to quantify the agricultural and human health risks associated with pharmaceutical exposure in agro-ecosystems.

What aspect of your work are you most excited about at the moment?

I have recently started at the University of Leeds as a University Academic Fellow. I am excited about the opportunity to develop my own research group and an independent programme of research centred on exploring the fate and uptake of contaminants in terrestrial systems.

In your opinion, what are the most important questions to be asked/answered in this field of research?

As highlighted in our recent publication we are unable to currently assess the risk of pharmaceuticals in agro-ecosystems because we do not have a high level of understanding of many of the processes and compartments involved in the exposure of pharmaceuticals. Work is urgently needed to understand the fate and transport of pharmaceuticals in arable soils systems and the effects of chronic, low level exposure to these substances on microbes, invertebrates, plants, wildlife and humans. In addition, research pertaining to the fate, uptake and effects of pharmaceutical mixtures and metabolites is lacking.

Ultimately, it is not feasible to experimentally determine all the data we need to fill the identified knowledge gaps, so a key focus is the need to develop and validate models to predict the uptake of pharmaceuticals by non-target organisms. This will enable us to have a better understanding of the exposure of pharmaceuticals in terrestrial systems and provide basis for understanding any potential risk.

What do you find most challenging about your research?

I find translating results from laboratory experiments to understand the impacts of pharmaceuticals in our natural environment a particularly challenging aspect about my research. This is an inherently complex topic and trying to account for the complexity of environmental matrices across spatial and temporal scales, such as differences in soil properties, makes for a significant, yet interesting, challenge.

 In which upcoming conferences or events may our readers meet you?

I will be attending the 2019 Society of Toxicology and Environmental Chemistry (SETAC) conference in Helsinki where I will be presenting some recent work on the potential for pharmaceutical translocation to beehives.

How do you spend your spare time?

I love to spend my spare time exploring new places with my family; this usually involves a lot of ice cream and trying to keep up with my two-year-old son.

Which profession would you choose if you were not a scientist?

I am a naturally inquisitive person and wanted to pursue a career in journalism when I was at school but this soon changed to a passion to pursue a career in science.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Pursue opportunities for multi-disciplinary collaboration to facilitate the sharing of expertise across complementary subject areas. This enables you to develop novel and interesting hypotheses. Some of my most interesting research has involved collaborating with plant biologists, analytical chemists and mathematical modellers.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series – Nathaniel R Warner


Nathaniel Warner is currently an Assistant Professor at The Pennsylvania State University in the Department of Civil and Environmental Engineering. Previously, Dr. Warner received a BA from Hamilton College where he majored in Geology, an MS in Hydrogeology from Miami University in Oxford, Ohio and a PhD in Earth and Ocean Sciences from Duke University. He was the Joseph B Obering Postdoctoral Fellow, Dartmouth College, Department of Earth Sciences from 2013-2015. His current research focuses on using B, Sr, and Ra isotope geochemistry to better understand the processes controlling 1) salinization of freshwater 2) the fate and transport of metals in oil and gas produced waters once released to the environment, and 3) treatment technologies for oil and gas produced waters. Dr. Warner’s lab group has used Sr and Ra isotopes to trace the accumulation of metals associated with oil and gas wastewaters in both sediment and freshwater bivalves. His work has been published in Proceedings of the National Academy of Sciences-USA, Environmental Science and Technology, Applied Geochemistry, Geochimica et Cosmochimica Acta, Chemical Geology and Environmental Science: Processes and Impacts.

Read Dr Nathanial Warner’s Emerging Investigator article “Radium accumulation in carbonate river sediments at oil and gas produced water discharges: implications for beneficial use as disposal management” and read more about him in the interview below:

Your recent Emerging Investigator Series paper focuses on radium accumulation in carbonate river sediments at oil and gas produced water discharges. How has your research evolved from your first article to this most recent article?

Based on the results from the first article we expected oil and gas discharges to behave in a similar way, but that was not the case with our recent findings. Instead of radium being associated with barite (which is commonly discussed in the literature) in the most recent study we found the control on radium in sediments was the carbonate precipitation. This leads us to think that each oil and gas basin has varying geochemistry of its produced waters and each could have a different story to tell about fate and transport of radium (or other contaminants of concern) once discharged to the surface.

What aspect of your work are you most excited about at the moment?

Treatment technologies for the high salinity brines. It’s a challenge, but breakthroughs and the chance to make a big difference in how these waters are managed is exciting.

In your opinion, what are the most important questions to be asked/answered in this field of research?

How do we get radium out of high salinity fluids in an economic way? And where does the radium ultimately end up once released to the surface?

What do you find most challenging about your research?

Environmental samples, especially for radium often have large natural variations that can make clear trends or impacts difficult to quantify. We therefore need to make multiple measurements on a variety of samples to get at a reliable data set.

In which upcoming conferences or events may our readers meet you?

Goldschmidt – Barcelona and WRI16 – Siberia

How do you spend your spare time?

Outdoor activities, biking hiking, running.

Which profession would you choose if you were not a scientist?

Astronaut- but I suppose most of those folks are scientists…. How about an artist? I really enjoy creating things with my hands so maybe I would be sculpting.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Don’t give up on your career goals, but also don’t be afraid to take an indirect path to get there. All of the experiences along the way will make you a better researcher.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)