Emerging Investigator Series: Chiara Giorio

Chiara Giorio is Assistant Professor in Atmospheric Chemistry at the Yusuf Hamied Department of Chemistry of the University of Cambridge. Chiara graduated in Chemistry in 2008 from the University of Padua (Italy), where she remained for her PhD in Molecular Sciences (awarded in 2012). She was a postdoc at the University of Cambridge in the group of Professor Markus Kalberer until 2016, a researcher at the French National Centre for Scientific Research (CNRS) in 2017, and tenure-track Assistant Professor at the University of Padua until the beginning of 2020, when she returned to Cambridge. She is now leading a multidisciplinary research group working on air quality and climate science. She is the recipient of the 2021 RSC Environment, Sustainability & Energy Division Early Career Award and a Fellow of the Community for Analytical Measurement Science (CAMS).

Read Chiara’s Emerging Investigator Series article “Aqueous-phase processing of atmospheric aerosol influences dissolution kinetics of metal ions in an urban background site in the Po Valley” and read more about her in the interview below:

Your recent Emerging Investigator Series paper focuses on Aqueous-phase processing of atmospheric aerosol influences dissolution kinetics of metal ions in an urban background site in the Po Valley. How has your research evolved from your first article to this most recent article?

I had the fortune to touch many different aspects of environmental science research during my career so far. My first paper concerned the environmental fate of systemic pesticides and exposure routes of honeybees. Back then I was already working on air pollution too. These two, apparently very distinct, research lines had something in common. One of the exposure routes for honeybees was through dust (containing pesticides) emitted in the atmosphere during sowing of corn fields. Now my work is mainly focused on air pollution, trying to understand the mechanisms of toxicity but also monitoring people exposure to air pollution.

What aspect of your work are you most excited about at the moment?

I am part of collaborative research projects aiming at monitoring air quality in people’s homes and testing strategies to improve the quality of the air they breathe through available technologies but also behavioural change. I am really excited about this because I feel I can make a positive impact on people’s lives.

In your opinion, what are the most important questions to be asked/answered in this field of research?

We are on the verge of a climate catastrophe and current research is focusing on mitigation strategies. However, we don’t know how air pollution, currently killing more than 7 million people per year worldwide, is going to be affected by climate change. How can we  improve air quality as well as mitigating climate change?

What do you find most challenging about your research?

My research is interdisciplinary and requires a wide range of expertises. It can be very challenging to put together the right team and promote a good communication between people with different backgrounds but at the same time it can be very exciting and rewarding.

In which upcoming conferences or events may our readers meet you?

I will be at the RSC “Analytical Research Forum 2022” in London in June and at the RSC “#EnvChem2022: Chemistry of the Whole Environment Research” in York in July.

How do you spend your spare time?

I love cooking, sports, and tv series but, right now, in my spare time I am mostly a mum of a lovely little boy.

Which profession would you choose if you were not a scientist?

I am very happy to be a scientist, but if I had to choose another job I would probably be a chef in a small restaurant. I love cooking and I like small characteristic restaurants that base their menu on local products. They always have a unique flavour and unique atmosphere.

Can you share one piece of career-related advice or wisdom with other early career scientists?

My advice is to believe in yourself, in your ability to reach your objectives and to not get discouraged by people and events.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series: Rachel C. Scholes

Rachel Scholes is an Assistant Professor in the Department of Civil Engineering at the University of British Columbia, where she leads a research group in environmental engineering. Her research focuses on trace organic contaminants and their fate in treatment systems for water and wastewater. Currently, her group is investigating photochemical transformations of emerging contaminants and the formation of oxidized and nitrogenous byproducts, as well as the fate of trace organic contaminants in nature-based treatment systems. Her research aims to address the implications of trace contaminants for human health, ecotoxicity, and the development of safer alternatives to hazardous chemicals. Prior to joining UBC, she completed a postdoctoral appointment at the U.S. Department of Agriculture’s Bioproducts Research Unit, where she conducted hazard analyses of emerging contaminants and evaluated safer alternatives to chemical antimicrobials. She earned an M.S. and Ph.D. in Environmental Engineering from the University of California, Berkeley, and a B.S. in Chemical Engineering from Northwestern University, and she completed a Fulbright Graduate Student Fellowship in the Department of Chemistry at the University of Otago.

Read Rachel’s Emerging Investigator Series article “Contributions of Reactive Nitrogen Species to Transformations of Organic Compounds in Water: A Critical Review” and read more about her in the interview below:

Your recent Emerging Investigator Series paper focuses on Contributions of Reactive Nitrogen Species to Transformations of Organic Compounds in Water: A Critical Review. How has your research evolved from your first article to this most recent article?

I was very fortunate to have opportunities to explore research as an undergraduate student, and I discovered a deep interest in environmental chemistry, particularly the fate of trace organic contaminants. Since then, I have approached trace contaminants from multiple perspectives. My first, first-author paper is from my Fulbright research in an environmental chemistry laboratory, which focused on the bioaccumulation of halogenated pesticides in trout from a large river system on New Zealand’s South Island. My studies in New Zealand allowed me to develop strong analytical chemistry skills and an understanding of contaminant fate and transport. I brought that background in environmental chemistry to my PhD research in environmental engineering. In my subsequent research, I queried the fate of pharmaceuticals and urban-use pesticides in engineered wetlands, and worked with green chemistry experts to assess lower-hazard alternatives to harmful chemicals. Each of these experiences has allowed me to refine my approach to addressing trace contaminants and their impacts. When I was studying open-water wetlands during my PhD, I became very interested in photochemical transformations, and reactive nitrogen species in particular. This most recent article builds on my PhD research by focusing on reactive nitrogen species and the resulting formation of toxic byproducts in water treatment processes.

What aspect of your work are you most excited about at the moment?

I recently started my position as a faculty member at UBC and am very excited to develop my own research group. I really enjoy sharing the excitement of doing research with my students. I am most looking forward to working with them to further advance our understanding of trace contaminant transformations and mitigate the risks posed by toxic chemicals.

In your opinion, what are the most important questions to be asked/answered in this field of research?

Transformation products are increasingly being considered in environmental engineering research, especially as high-resolution mass spectrometry becomes more widely available in research laboratories. With hundreds of thousands of parent compounds, it is unrealistic to experimentally assess all of the possible transformation products. Even if we know which products will form, we often do not have sufficient information about their toxicity and fate. As advanced analytical tools enable us to better detect the plethora of chemicals present in the environment, we need methods to prioritize which ones are of highest concern. This is one reason why I am interested in reactive nitrogen species – because they result in the formation of nitrated and nitrosated byproducts, which are often more toxic and less easily degraded than the parent compounds.

What do you find most challenging about your research?

Being somewhere between an environmental chemist and engineer presents the challenge that my research often spans a wide range from fundamental to applied. My research requires that we expand our mechanistic understanding of contaminant transformations while studying realistically complex environmental systems. For example, when we look at constructed wetlands, we have multiple processes directly affecting contaminant transformation (e.g., sorption, biotransformation, photolysis) as well as design parameters that influence these processes indirectly, such as hydraulic retention time, flow paths, and redox conditions. As someone who loves to understand the underlying principles of a system and the practical implications, I am constantly trying to bridge the gap between fundamentals and applications.

In which upcoming conferences or events may our readers meet you?

I will be at the American Chemical Society meeting this August in Chicago, and I hope to be attending more in-person conferences soon.

How do you spend your spare time?

I spend as much of it outdoors as possible. I love trail running, backpacking, and exploring the Pacific Northwest. I am also a musician. On stormy days you’ll likely find me playing my French horn or reading a novel.

Which profession would you choose if you were not a scientist?

When choosing an undergraduate major, I pretty seriously considered becoming a music teacher. In fact, I started out in a dual degree program majoring in music education and chemical engineering. If I was not a scientist, I would probably be directing music groups and teaching kids to play musical instruments.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Spend the time to forge strong relationships and learn from your peers. Learning about research directions adjacent to your own can spur new ideas and building strong relationships with other students and postdocs can help you create a network of support in your future career. I keep in touch with friends from graduate school both inside and out of academia. Being in touch with other new faculty members has provided me with an incredibly helpful support system.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series: Mohamed Ateia Ibrahim

Dr. Mohamed (Moha) Ateia Ibrahim is a Group Leader and Environmental Engineer at the US EPA. Moha is an expert in the areas of emerging contaminants and the assessment of various separation and destruction technologies from lab-scale to Superfund sites. Inspired by the realization that conventional water treatment techniques will not be able to treat these problems, Moha have devoted himself to developing practical remediation solutions that draw on his expertise in engineering and chemistry. He focused on the assessment of conventional methods, the development of new materials and/or composites to adsorb/degrade micropollutants, and the mobility of new classes of contaminants in the environment (e.g., microplastics). He has initiated and led over a dozen of research collaborations with researchers across the world to target micropollutants in a practical way.

Read Mohamed’s Emerging Investigator Series article “Microplastics Sources, Fate, Toxicity, Detection, and Interactions with Micropollutants in Aquatic Ecosystems – A Review of Reviews” and read more about him in the interview below:

Your recent Emerging Investigator Series paper focuses on Microplastics Sources, Fate, Toxicity, Detection, and Interactions with Micropollutants in Aquatic Ecosystems – A Review of Reviews. How has your research evolved from your first article to this most recent article?

Recent progress in analytical chemistry has made it possible to detect a growing number of emerging contaminants (ECs) in natural and engineered water environments. Inspired by the realization that conventional water treatment techniques will not be able to treat these problems, I have devoted myself to developing practical remediation solutions that draw on my expertise in  engineering and chemistry. Specifically, I have focused on the assessment of conventional methods (e.g., GAC, IX resins), the development of new materials and/or composites to adsorb/degrade ECs (e.g., PFAS, DBPs, PPCPs, illicit drugs), and the mobility of new classes of contaminants in the environment (e.g., microplastics). I have a multidisciplinary research background with hands-on experience in environmental engineering, materials chemistry, and agricultural engineering. I believe that solving global environmental challenges will require diverse expertise. Towards this end, I have initiated and led over a dozen research collaborations with researchers across the world to target ECs in a practical way.

What aspect of your work are you most excited about at the moment?

The most exciting and motivating aspect about my work is the positive impact on human health by contributing in protecting and treating water sources.

In your opinion, what are the most important questions to be asked/answered in this field of research? & 4. What do you find most challenging about your research?

The field of “emerging” contaminants is always challenged by the lack of information about detection methods and their sensitivities as well as comprehensive toxicological assessments. Once we can detect a contaminant and verify its toxicity, then we need to find its fate in a water/wastewater treatment plant and find novel solutions for the persistent contaminants. However, the magnitude of the problem is huge because the estimated number of chemicals and chemical mixtures is more than 350,000. Therefore, in addition to the experimental challenges/questions above, modeling efforts are needed more than ever before to deal with such large and branched problems.

In which upcoming conferences or events may our readers meet you?

I will be attending multiple meetings in March including ACS Spring Meeting and Water Environment Federation Summit.

How do you spend your spare time?

Before the pandemic, I used to travel a lot. Now, I like cooking and watching movies and documentaries.

Which profession would you choose if you were not a scientist?

I would work for an NGO.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Establishing a strong network of connections is a key factor for success and it should start at the stage of graduate school. This network should include mentors and collaborators who give guidance and support. In addition, the network of early career scientists has a bridge with junior students and researchers as a way of training and knowledge transfer.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series: Jennifer Apell

Jennifer Apell is an Assistant Professor of Environmental Engineering in the Department of Civil and Urban Engineering at NYU. She earned her PhD in Environmental Chemistry from MIT in 2017 and completed her postdoctoral research at ETH Zurich in the Department of Environmental Systems Science. Her research focuses on the environmental fate of manmade organic pollutants, specifically characterizing the mechanisms that control the equilibrium and kinetics of partitioning between environmental media and on light-driven degradation pathways.

Read Jennifer Apell’s Emerging Investigator Series article “quantifying the impact of cloud cover on solar irradiance and environmental photodegradation” and read more about her in the interview below:

Your recent Emerging Investigator Series paper focuses on Quantifying the Impact of Cloud Cover on Solar Irradiance and Environmental Photodegradation. How has your research evolved from your first article to this most recent article?

If you put this article next to the very first one I published during my master’s degree, you would probably be surprised they were from the same person. My first research was in water treatment engineering and focused on bench-scale testing of an ion exchange treatment processes for a small utility in Florida. This article uses machine learning models and publicly available data from the National Renewable Energy Laboratory (NREL).

Make no mistake, I am still an experimentalist, but the COVID-19 pandemic required a lot of adaptation from early career faculty. There was some precedent for this work as it builds off some of my postdoctoral research on modeling clear sky irradiance spectra to quantify “best-case scenario” photodegradation rates. This new research tries to make those values more realistic by considering the effects of clouds. With the messiness of real world data, machine learning models proved to be a powerful tool to find overall trends hidden within tens of thousands of data points.

What aspect of your work are you most excited about at the moment?


Learning some data science approaches during the lockdown was fun. However, many of these approaches are most useful for large datasets, which are pretty rare for the research I normally work on. I’m now looking forward to learning how advances in data science can be applied to analyze the sparse data sets that are typical when investigating the environmental fate of manmade chemicals.

I have also been focusing on having environmental justice concerns and community engagement guide and inform the research questions I address. New York City might be one of the best places for this. It is a new area for me, and the interest and engagement from the community that I have experienced so far is truly inspiring.

 

In your opinion, what are the most important questions to be asked/answered in this field of research?


That is a difficult question; there are so many questions that still need to be answered about pressing environmental concerns. Instead I would suggest that in our attempts to answer these questions, we give extra consideration to understanding the mechanisms—the ‘why?’—of the process. There are just too many chemicals and too many human-impacted environments for us to be investigating them on a case-by-case basis. Although our research may be focusing on a single pollutant or a single location, we should always try to put our results in a broader context so that the insights gained from our efforts can be translated to other situations.

 

What do you find most challenging about your research?


There are still so many things we don’t know about environmental processes and the impact that humans have on different environments. I’ve struggled with focusing on just a few research questions now that I have the freedom of a principal investigator. I find so much of the research in the field to be very exciting and important. I have a sign in my office that reminds me to stay focused on my currently chosen research questions.

 

In which upcoming conferences or events may our readers meet you?


I am co-organizing the Aquatic Photochemistry session at ACS this spring in San Diego. It looks like it is going to be amazing – so many good talks! I will unfortunately have to attend virtually. I’m also hoping to make it to AEESP and the Gordon Research Conference on Environmental Sciences: Water during the summer.


How do you spend your spare time?


My dog, Lumen, and I spend some time in the dog park, and I try to keep plants alive with varying success. I like to take the extra time to walk to places to get to know the neighborhood. I occasionally volunteer as a participant in other people’s research. I’ve been doing this since graduate school. Social science studies are particularly interesting because the research questions have always been hush-hush, so the tasks seem very random sometimes.


Which profession would you choose if you were not a scientist?

Well I was a practicing engineer for a while before returning to school for a PhD. But let’s say if I weren’t any kind of scientist or engineer, I think I would want to be a detective. The use of reasoning and the long time required for something to be concluded seems like it would be similar between the two professions.


Can you share one piece of career-related advice or wisdom with other early career scientists?

Work on research questions that excite you. Equipment failure and inconclusive results are generally unavoidable, and being excited to answer the question can help get you through those hard times to the much happier times of contributing new data and knowledge to the field.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Themed Issue Open for Submissions: Chemistry of Atmospheric Pollutants

Environmental Science: Processes & Impacts seeks your highest impact research for our upcoming Themed Issue dedicated to Chemistry of Atmospheric Pollutants. 

Guest Edited by ESPI Editorial Board member Amila De Silva (Environment and Climate Change Canada, Canada), Max McGillen (French National Centre for Scientific Research, France), Jason Surratt (University of North Carolina, USA) and Cora Young (York University, Canada).

The goal of the issue is to present advances in molecular-level study of atmospheric chemical processes that form our critical understanding of pollutant emissions, transport, transformation, and deposition. Such research is particularly apt given the accelerated perturbations such as climate change, changing emissions (including emerging contaminants), land development and regulations.

Submissions are open from now until 31st April 2022

We welcome urgent Communications, Full papers and Reviews. Articles can be submitted using our online submission system: https://mc.manuscriptcentral.com/em. Upon submission, please add ‘Invited for the Chemistry of Atmospheric Pollutants Themed Issue’ in step 4 of the submission process. All manuscripts will undergo initial assessment and peer review as per the usual standards of the journal.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series: Gregory LeFevre

Greg LeFevre is an assistant professor of environmental engineering and science in the Department of Civil & Environmental Engineering and IIHR—Hydroscience & Engineering at the University of Iowa where he started in 2016. He did his BS at Michigan Tech, MS and PhD at University of Minnesota, and Postdoc at Stanford University all in environmental engineering. The LeFevreLab focuses on elucidating biotransformation products and pathways of emerging organic contaminants with the goal of informing improved design of ‘engineered-natural’ treatment systems for non-point pollutants, like urban stormwater and agricultural drainage, and transform wastes into resources, protecting people and ecosystems. Greg has received multiple sources of recognition for his work, including the National Science Foundation CAREER Award, the University of Iowa Early Career Scholar of the Year award, the American Chemical Society Editor’s Choice award and ACS Best Paper award, the Royal Society of Chemistry Environmental Sciences ‘Best Paper’ and multiple ‘HOT’ articles, National Academy of Engineering Frontiers of Engineering fellow, the AEESP Best Dissertation, amongst others.

Read Gregory LeFevre’s Emerging Investigator Series article “municipal wastewater as a year-round point source of neonicotinoid insecticides that persist in an effluent-dominated stream” and read more about him in the interview below:

Your recent Emerging Investigator Series paper focuses on Municipal Wastewater as a Year-Round Point Source of Neonicotinoid Insecticides that Persist in an Effluent-Dominated Stream. How has your research evolved from your first article to this most recent article? 

In some ways, my work has changed greatly through time, and in others it is very consistent. I did my PhD at the University of Minnesota focused on the fate and biotransformation of organic contaminants from stormwater in bioretention cells, and my postdoc was at Stanford focused on emerging contaminants in stormwater as well as plant metabolism of emerging contaminants during water recycling. Since starting at University of Iowa as a faculty member, we’ve been continuing in these areas and are also very interested in the fate and transformation of so-called ‘target-specific’ pesticides like the neonicotinoids. These compounds are so interesting and important because, although the parent compounds are explicitly designed to be less toxic to many non-target organisms, only very slight alterations to the chemical structure can dramatically alter the toxicity, reactivity, and fate of the transformation products.

What aspect of your work are you most excited about at the moment?

I am really interested in how complex chemical exposure mixtures occur and change in the environment and could lead to unanticipated effects to biota. Complex mixtures are important because of the potential for interactive effects on organisms (e.g., drug-drug interactions); when mixtures change in space and time, so can the risk profile. New collaborative work that we’ve been doing at the field study site featured in this paper has been probing some of the spatiotemporal drivers of complex mixture evolution, as well risk patterns. Mixtures are how chemicals occur in the real environment.

In your opinion, what are the most important questions to be asked/answered in this field of research?

I believe that we are standing at the verge of multiple big-data “omics” revolutions, with a huge opportunity to converge high res mass spec with biological applications (transcriptomics, genomics) to link chemical exposures with effects to biota—which is ultimately why we care. This will be critical to being able to evaluate complex chemical mixture effects on organisms, which is very much a grant challenge—and difficult.

What do you find most challenging about your research?

I think that there is always a push-pull struggle between working at the interface between the fundamental but realistic and the more applied but less controlled. Navigating that is always a challenge, and I think that it’s important to be able to—and for journals to value—work across that spectrum. Field studies can be more ‘messy’, but are so important!

In which upcoming conferences or events may our readers meet you?

I usually am at ACS once a year, often at SETAC, AEESP, EmCon, and Gordon Env Sci Water. Of course, during the pandemic, that has been really disrupted.

How do you spend your spare time?

I have two little kids (4 and 2 years old), so not much spare time, but I like to do outdoors activities as much as possible. Fortunately, my girls love fishing (at least when we are catching fish), catching bugs, and exploring in the woods. A new creek is an all-day itinerary.

Which profession would you choose if you were not a scientist?

I honestly never really considered doing something that was not “a scientist” at least of some sort. My dad’s influence was really big on me; he was a woodworker by trade and taught me angles, planning, and precession—but his passion (and now retirement occupation) has always been ecological restoration. He took me with him to weekly volunteer workdays since I was four, and all of my jobs, internships, and education have been around the environmental sciences.

Can you share one piece of career-related advice or wisdom with other early career scientists?

This might be both the worse and best advice to early career researchers during the pandemic: Make friends before you need them. By that, I mean reach out to folks across your university who might be of potential connection or collaboration before you ask them for something or want them to join on a collaboration or proposal. The first year I was at UIowa, I met with someone new every or every other week, from Public Health to Chemistry to Education to Water Resources, etc. and mostly listened, but also got to share a little of what I do and my interests. Totally pull the ‘new person’ card, people will give you an hour. It totally makes coming back to people later with an idea less awkward, and some have resulted in great collaborations—and it’s much better than people only coming together to rally around a proposal (assuming they even know who you are). Getting to know folks is even more important during COVID, but harder.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Poster prize winners at EMCON 2021

The Royal Society of Chemistry’s Environmental Science journals were delighted to sponsor student poster presentation prizes at EMCON 2021, which took place Online (hosted by the University of Washington) from the 13th – 14th September this year.

Prizes were awarded to the following students, on behalf of Environmental Science: Processes & ImpactsEnvironmental Science: Water Research & TechnologyEnvironmental Science: NanoEnvironmental Science: Atmospheres and Environmental Science: Advances.

Christopher Knutson, University of Iowa
‘Computational approaches for the prediction of environmental transformation products: Chlorination of steroidal enones’

Jonathan Beherens, Duke University
‘Towards a Tiered Approach to Assess Effects of Contaminant Mixtures in Urban Streams’

Mira Chaplin, University of Michigan
‘Towards Predictive Models of Viral Inactivation by Chlorine’

Madhusudan Kamat, Louisiana State University
‘Use of UV LEDs for halogen based advanced oxidation processes for removal of micropollutants from DOM-rich water’

Sasha Gallimore, University at Buffalo
‘Assessing haloacetonitrile formation from model nitrogenous precursors’

Congratulations to Christopher, Jonathan, Mira, Madhusudan & Sasha!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series: Li Li

Li Li is an Assistant Professor leading the Health & Environment Assessment Team (HEAT) at the University of Nevada, Reno since 2019. He obtained his BSc and PhD degrees from Nankai University in 2012 and Peking University in 2017, respectively, and received postdoctoral training at the University of Toronto Scarborough between 2017 and 2019. His research seeks to understand the accumulation, transport, transformation of synthetic chemicals (e.g., flame retardants, plasticizers, pesticides, and surfactants) and materials (e.g., nanomaterials and microplastics) in a nexus comprising the human socioeconomic system, environment, and food webs, as well as the resulting adverse environmental and health effects. He strives to establish, foster, maintain, and promote a variety of mechanistically sound and computationally effective models, to advance our thinking and understanding of the behavior and processes of synthetic chemicals and materials and meanwhile to inform decision making.

Read Li Li’s Emerging Investigator Series article “the role of chemical properties in human exposure to environmental chemicals” and read more about her in the interview below:

Your recent Emerging Investigator Series paper reviewing the role of chemical properties in human exposure to environmental chemicals. How has your research evolved from your first article to this most recent article?

I research various chemical substances manufactured and commercialized by humans and but found to be hazardous to humans and other organisms. For the past years, I have been striving to develop a holistic, mechanistic modeling framework to describe the complete continuum from the production of these chemical substances to their occurrence within the human body. This modeling framework integrates various components such as production, environmental releases, environmental concentrations, exposure, and risks. It allows exploring how human exposure to chemical substances responds to industrial and consumption activities, physicochemical properties of chemicals, features of the environment of interest, and human behavior. I first managed to bridge chemical production, environmental releases throughout the lifecycle, and multimedia environmental concentrations through my doctoral work (compiled as a book entitled “Modeling the Fate of Chemicals in Products” published by Springer). This work was then expanded, during my post-doctoral training, to include the exposure of humans and various ecological receptors, leading to the birth of a comprehensive exposure model named “PROduction-To-EXposure (PROTEX)”. During the most recent year, I continued to extend the chain of models to include toxicity and health outcomes to support assessments of health risks and impacts. This ambitious modeling framework now enables scientists, industrial users, and policymakers to predict what would happen to our environment and health if we decide to manufacture a certain amount of a certain chemical substance; it also allows linking the adverse environmental and health impacts at the current moment back to the regrettable decisions decades ago.

What aspect of your work are you most excited about at the moment?

The interdisciplinarity of my work is the most fascinating. The quantitative characterization of the continuum from chemical production to environmental and health impacts, requires synergistic leveraging of the knowledge and successful experience in environmental chemistry, exposure and health sciences, and industrial ecology. We need systematic understandings of how chemicals move, change, and accumulate in the human socioeconomic system, the physical environment, and the bodies of humans and other organisms. An example is this Emerging Investigators article, which discusses how properties of partitioning, dissociation, reaction, and mass transfer (concepts in environmental chemistry) govern and impact external and internal exposure to various chemical substances (concepts in exposure science). Both environmental chemists and exposure scientists can benefit from reading this paper. I am proud that I am one of the pioneers seeking to fuse these independent research areas and make them interdependent and interconnected.

In your opinion, what are the most important questions to be asked/answered in this field of research?

I think the most important question is to understand how human activities (manufacturing and consumption of chemical substances, behaviors related to chemical intake, measures for mitigating health risks or impacts, etc.) and chemical properties (tonnage, partitioning, reaction, dissociation, mass transfer, etc.) interactively determine human exposure to chemicals and associated health outcomes. Especially, we need a better understanding and characterization of how variabilities in these two aspects (e.g., interindividual variabilities in toxicokinetics, behavior, and toxicological susceptibility, as well as inter-chemical variabilities in partition ratios, half-lives, and mass transfer coefficients) shape the varied human exposure and health outcomes.

Such a systematic understanding is of vital importance because we are exposed to a myriad of chemical substances present in the multimedia environment, released from multiple lifecycle sources, through multiple exposure routes – it is close to impossible to investigate every single chemical case by case. And we also need to identify the most vulnerable and susceptible subgroups of people with disproportionate chemical exposure if we want to protect every single person in our community for environmental justice and fairness.

What do you find most challenging about your research?

The interdisciplinarity also brings about challenges. There has long been a lack of communication and dialog between scientists from these different disciplines. Knowledge and experience are largely compartmentalized and fragmented. For instance, while environmental releases “remain the least understood part of the research” to environmental chemists, industrial ecologists already have a wide range of well-established, mature methodologies on hand for estimating the lifecycle releases of chemical substances. However, since data of environmental releases are not directly measurable or observable, they cannot be evaluated or validated without being converted to concentrations in environmental compartments, which often plagues industrial ecologists due to the lack of fate and transport modeling techniques in industrial ecology. In addition, a common language or knowledge is also missing in many cases. An example is the biotransformation of chemical substances inside the organism body: while its important role in determining bioaccumulation and human dietary ingestion of chemical substances has been very well recognized and characterized by environmental chemists, as reviewed in this Emerging Investigators article, it has yet to be widely accepted by most exposure scientists and/or toxicologists. Also, terminologies and nomenclatures vary among these different disciplines, which adds difficulties to communication and dialog between these research areas. For example, just ask ourselves: what are we talking about when saying “bioavailability”? When using this word, are we really referring to the same thing as an environmental chemist, a toxicologist, an exposure scientist, or a pharmaceutical scientist does?

In which upcoming conferences or events may our readers meet you?

I usually attend the annual meetings of the Society of Environmental Toxicology and Chemistry in North America and Europe. I am also a frequent attendee of the annual meetings of the International Society of Exposure Science.

How do you spend your spare time?

I spend my spare time with my wife, hanging out, watching films and variety shows, and exploring various food and fun. I am also a nice photographer!

Which profession would you choose if you were not a scientist?

I may choose to become a journalist, as I love to investigate the truths beneath the surface and share intriguing stories with others. To me, a scientist is quite similar to a journalist, as they both relay something unknown to the audience through their efforts of exploration.

Can you share one piece of career-related advice or wisdom with other early-career scientists?

It is important to understand both the big picture of the research area and the detailed, fundamental technical skills (e.g., laboratory, modeling, fieldwork, observational methodologies) required in the research area. Vision is crucial to success, but bringing vision into reality is more important. After all, “talk is cheap, show me the data”.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series: Rachel O’Brien

Rachel received her Ph.D. from UC Berkeley in Allen Goldstein’s group and then carried out two postdocs, one at Lawrence Berkeley National Lab and the other at MIT. She started a faculty position in the Chemistry department at William & Mary in 2017 where she is now entering her fifth year. Her research focuses on complex organic mixtures found in aerosol particles and on indoor and outdoor surfaces. With a team of undergraduates and masters’ students, she probes details on the chemical composition and investigates how the mixtures change as they age under natural conditions. Collaborations are a key component of her research, and she is so happy to have had the opportunity to take part in the HOMEChem field campaign to investigate questions in indoor chemistry.

Read Rachel O’Brien’s Emerging Investigator Series article “Chemical and Physical Properties of Organic Mixtures on Indoor Surfaces During HOMEChem” and read more about her in the interview below:

Your recent EmergingInvestigator Series paper focuses on Chemical and Physical Properties of Organic Mixtures on Indoor Surfaces During HOMEChem. How has your research evolved from your first article to this most recent article? 

During my PhD, I explored the chemical composition of aerosol particles using soft ionization and ultra-high resolution mass spectrometry. In my first postdoc I worked on imaging individual aerosol particles using microspectroscopic techniques. During my second postdoc, I helped develop a method to atomize very small sample volumes into an Aerosol Mass Spectrometer. This most recent article is built on all these research skill sets. To fully understand the chemical composition and physical properties of complex mixtures like the ones we look at here, you need a range of different techniques. I’m so fortunate to have had the opportunity to combine my group’s main skill set (chemical analysis) with work from our collaborators to build a full picture of the chemical and physical properties of these indoor films.

What aspect of your work are you most excited about at the moment?

I’m really excited about the aging work that we are doing for complex organic mixtures from biomass burning, secondary organic aerosol, and indoor surface films. Our ability to track chemical changes over longer periods of time is providing some really interesting data sets.

In your opinion, what are the most important questions to be asked/answered in this field of research?

In indoor chemistry I think we really need to understand the chemical mixtures we have both in the surface films, but also in the air. In addition to that, we need to understand the variability that is present since no two houses or workplaces will be the same. With the Pandemic, many of us are spending more time indoors and this begs the questions: what are we breathing and what are we exposed to in these environments? Once we understand all this, we can better design aspects of the built environment, like ventilation and building materials, to improve our health and the quality of our daily life.

What do you find most challenging about your research?

The data sets we generate are complicated and can take long periods of time to analyze. As a pre-tenure faculty member, the slower pace for this can be a bit stressful. But the time we spend pays off in the detailed information we can generate.

In which upcoming conferences or events may our readers meet you?

I will be at AAAR this fall, and I’ll be attending AGU remotely.

How do you spend your spare time?

I don’t find that I have a lot of spare time, but what I do have I spend with my husband Jeremy.  I hope to get back into swimming again once things open back up after the Pandemic.

Which profession would you choose if you were not a scientist?

If I weren’t a scientist, I would want to run a ranch focusing on beekeeping with lots of fields of different native flowers combined with wine fields.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Find good people to work with: people who both encourage you and provide good feedback. Science is a great field to work in when you have a community of fantastic collaborators and mentors to share your journey.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Environmental Science: Processes & Impacts Collections

Environmental Science: Processes & Impacts (ESPI) is the home for high-impact research in all areas of the environmental chemical sciences, including chemistry of the air, water, soil and sediment. We welcome studies on the environmental fate and effects of anthropogenic and naturally occurring contaminants, both chemical and microbiological, as well as related natural element cycling processes. Here, we’ve brought together our latest Article Collections and Themed Issues to enable you to easily navigate to content most relevant to you. We hope that you enjoy reading the papers in these collections!

Themed issues now open for submissions

Click here to find out more


Click here to find out more

Ongoing themed collections

Themed issues

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)