Archive for the ‘News’ Category

Light-trapping in dye-sensitized solar cells

Stephen Foster and Sajeev John demonstrate numerically that photonic crystal dye-sensitized solar cells (DSSCs) can provide at least a factor of one-third enhancement in solar light absorption and power conversion efficiency relative to their conventional counterparts in their recent EES paper.

Their design, which consists of a lattice of modulated-diameter TiO2 nanotubes filled with TiO2 nanoparticles and interstitial regions filled with electrolyte, has the potential of optimizing both light trapping and electron collection.

Light-trapping in dye-sensitized solar cells

Read this HOT article today:

Light-trapping in dye-sensitized solar cells
Stephen Foster and Sajeev John
DOI: 10.1039/C3EE40185E


Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Salt water to fresh water: New flow-electrode capacitive deionisation process achieves impressive results

Desalination via a new membrane capacitive deionization process utilizing flow-electrodes

Scientists from Korea present a major step forward in the field of capacitive deionization (CDI) in their recent EES Communication. They cleverly substituted the fixed carbon electrodes used in typical CDI processes with a suspension of active carbon nanoparticles, achieving excellent desalination efficiency.

CDI is a promising water-treatment method. It has the advantage of being more energy efficient that other processes, such as reverse osmosis. However, CDI is not traditionally used for the desalination of salty water, because it requires a discharging step. After the adsorption of a certain amount of ions on the carbon electrodes in the CDI cell, the cell voltage is reduced and the electrodes are shortcircuited.  The new method presented in this Communication  avoids the need for a discharging step, and therefore allows easy scale-up  by simply increasing the number of flow-electrodes used.

Read this HOT Communication today:

Desalination via a new membrane capacitive deionization process utilizing flow-electrodes
Sung-il Jeon, Hong-ran Park, Jeong-gu Yeo, SeungCheol Yang, Churl Hee Cho, Moon Hee Han and Dong Kook Kim
DOI: 10.1039/C3EE24443A

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Carbon nanotube modified carbon composite monoliths for carbon dioxide capture

Shi Su and co-authors from Australia have prepared carbon composite monoliths with superior CO2 adsorption properties and hierarchical macroporous-microporous structures.

They prepared the monoliths by mixing a commercial phenolic resin with a small amount of carbon nanotubes followed by carbonization and physical activation with CO2.  Their method is simple and low-cost, and may pave the way for more general use of carbon nanotubes in hierarchically porous structured composites for energy and environmental applications.

Read more in this HOT Communication:

Carbon nanotube modified carbon composite monoliths as superior adsorbents for carbon dioxide capture
Yonggang Jin, Stephen C. Hawkins, Chi P. Huynh and Shi Su
DOI: 10.1039/C3EE24441E

Carbon nanotube modified carbon composite monoliths as superior adsorbents for carbon dioxide capture

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

A novel ZEBRA battery: complex chemistry and high performance

Scientists from Pacific Northwest National Laboratory have designed a low-cost Na–ZnCl2 battery with a planar β′′-Al2O3 solid electrolyte. They found that the ZnCl2-based chemical reactions were complex with multiple electrochemical reactions including liquid-phase formation occurring at temperatures above 253 °C. Their Na-ZnCl2 battery performs impressively, and offers several advantages over Na-NiCl2 batteries.

Read this HOT article today:

A novel low-cost sodium–zinc chloride battery
Xiaochuan Lu, Guosheng Li, Jin Y. Kim, John P. Lemmon, Vincent L. Sprenkle and Zhenguo Yang
DOI: 10.1039/C3EE24244G

A novel low-cost sodium–zinc chloride battery

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

High impact polymer research from Energy & Environmental Science

We would like to share with you a selection of high impact articles, published in Energy & Environmental Science covering the diverse applications of polymers in the broad fields of energy and environmental science.

On behalf of Editor-in-Chief Nate Lewis (Caltech) and Board members Peng Wang (Changchun Institute of Applied Chemistry) and Markus Antonietti (Max Planck Institute of Colloids and Interfaces) we invite you to submit your best research to Energy & Environmental Science.

With an Impact Factor of 9.61 and ranked #1 in its field, Energy & Environmental Science is the ideal place to publish your research.

Read this high-impact polymer research today:

Reviews and Analysis

Strong acceptors in donor–acceptor polymers for high performance thin film transistors
Jonathan D. Yuen and Fred Wudl
DOI: 10.1039/C2EE23505F

Conjugated porous polymers for energy applications
Filipe Vilela, Kai Zhang and Markus Antonietti
DOI: 10.1039/C2EE22002D

Prospects for polymer-based thermoelectrics: state of the art and theoretical analysis
Theodore O. Poehler and Howard E. Katz
DOI: 10.1039/C2EE22124A

Morphology characterization in organic and hybrid solar cells
Wei Chen, Maxim P. Nikiforov and Seth B. Darling
DOI: 10.1039/C2EE22056C

Poly(3-hexylthiophene): synthetic methodologies and properties in bulk heterojunction solar cells
Assunta Marrocchi, Daniela Lanari, Antonio Facchetti and Luigi Vaccaro
DOI: 10.1039/C2EE22129B

Overcoming efficiency challenges in organic solar cells: rational development of conjugated polymers
Hae Jung Son, Bridget Carsten, In Hwan Jung and Luping Yu
DOI: 10.1039/C2EE21608F

Advances in high permeability polymeric membrane materials for CO2 separations
Naiying Du, Ho Bum Park, Mauro M. Dal-Cin and Michael D. Guiver
DOI: 10.1039/C1EE02668B

Manufacture, integration and demonstration of polymer solar cells in a lamp for the “Lighting Africa” initiative
Frederik C. Krebs, Torben D. Nielsen, Jan Fyenbo, Mads Wadstrøm and Marie S. Pedersen
DOI: 10.1039/B918441D

Magnesium nanocrystal-polymer composites: A new platform for designer hydrogen storage materials
Rizia Bardhan, Anne M. Ruminski, Alyssa Brand and Jeffrey J. Urban
DOI: 10.1039/C1EE02258J

Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells
Frédéric Jaouen, Eric Proietti, Michel Lefèvre, Régis Chenitz, Jean-Pol Dodelet, Gang Wu, Hoon Taek Chung, Christina Marie Johnston and Piotr Zelenay
DOI: 10.1039/C0EE00011F

Hydrocarbon proton conducting polymers for fuel cell catalyst layers
Jennifer Peron, Zhiqing Shi and Steven Holdcroft
DOI: 10.1039/C0EE00638F

Organic photovoltaics
Bernard Kippelen and Jean-Luc Brédas
DOI: 10.1039/B812502N

Tandem polymer photovoltaic cells—current status, challenges and future outlook
Srinivas Sista, Ziruo Hong, Li-Min Chen and Yang Yang
DOI: 10.1039/C0EE00754D

Life-cycle analysis of product integrated polymer solar cells
Nieves Espinosa, Rafael García-Valverde and Frederik C. Krebs
DOI: 10.1039/C1EE01127H

Original Research

Reversible CO2 capture with porous polymers using the humidity swing
Hongkun He, Wenwen Li, Mingjiang Zhong, Dominik Konkolewicz, Dingcai Wu, Karin Yaccato, Tim Rappold, Glenn Sugar, Nathaniel E. David and Krzysztof Matyjaszewski
DOI: 10.1039/C2EE24139K

Disentangling the impact of side chains and fluorine substituents of conjugated donor polymers on the performance of photovoltaic blends
Liqiang Yang, John R. Tumbleston, Huaxing Zhou, Harald Ade and Wei You
DOI: 10.1039/C2EE23235A

Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window
Kai Wang, Haiping Wu, Yuena Meng, Yajie Zhang and Zhixiang Wei
DOI: 10.1039/C2EE21643D

Electrospun and solution blown three-dimensional carbon fiber nonwovens for application as electrodes in microbial fuel cells
Shuiliang Chen, Haoqing Hou, Falk Harnisch, Sunil A. Patil, Alessandro A. Carmona-Martinez, Seema Agarwal, Yiyun Zhang, Suman Sinha-Ray, Alexander L. Yarin, Andreas Greiner and Uwe Schröder
DOI: 10.1039/C0EE00446D

Seamless polymer solar cell module architecture built upon self-aligned alternating interfacial layers
Jongjin Lee, Hyungcheol Back, Jaemin Kong, Hongkyu Kang, Suhee Song, Hongsuk Suh, Sung-Oong Kang and Kwanghee Lee
DOI: 10.1039/C3EE24454G

Microporous organic polymers for carbon dioxide capture
Robert Dawson, Ev Stöckel, James R. Holst, Dave J. Adams and Andrew I. Cooper
DOI: 10.1039/C1EE01971F

High mobility organic thin film transistor and efficient photovoltaic devices using versatile donor–acceptor polymer semiconductor by molecular design
Prashant Sonar, Samarendra P. Singh, Yuning Li, Zi-En Ooi, Tae-jun Ha, Ivy Wong, Mui Siang Soh and Ananth Dodabalapur
DOI: 10.1039/C1EE01213D

Highly durable and flexible dye-sensitized solar cells fabricated on plastic substrates: PVDF-nanofiber-reinforced TiO2 photoelectrodes
Yuelong Li, Doh-Kwon Lee, Jin Young Kim, BongSoo Kim, Nam-Gyu Park, Kyungkon Kim, Joong-Ho Shin, In-Suk Choi and Min Jae Ko
DOI: 10.1039/C2EE21674D

Inverted polymer solar cells with 8.4% efficiency by conjugated polyelectrolyte
Tingbin Yang, Ming Wang, Chunhui Duan, Xiaowen Hu, Lin Huang, Junbiao Peng, Fei Huang and Xiong Gong
DOI: 10.1039/C2EE22296E

First implementation of alkaline polymer electrolyte water electrolysis working only with pure water
Li Xiao, Shuai Zhang, Jing Pan, Cuixia Yang, Minglong He, Lin Zhuang and Juntao Lu
DOI: 10.1039/C2EE22146B

Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings
Yan Yao, Nian Liu, Matthew T. McDowell, Mauro Pasta and Yi Cui
DOI: 10.1039/C2EE21437G

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

EES Issue 4 of 2013 out now!

The latest issue of EES is now online. You can read the full issue here.

The outside front cover features an article on Flexible graphene–polyaniline composite paper for high-performance supercapacitor by Huai-Ping Cong, Xiao-Chen Ren, Ping Wang and Shu-Hong Yu.

K7[CoIIICoII(H2O)W11O39]: a molecular mixed-valence Keggin polyoxometalate catalyst of high stability and efficiency for visible light-driven water oxidation is the article highlighted on the inside front cover by Fangyuan Song, Yong Ding, Baochun Ma, Changming Wang, Qiang Wang, Xiaoqiang Du, Shao Fu and Jie Song.

Issue 4 contains the following Opinion, Analysis, Review and Perspective articles:

Decarbonization at crossroads: the cessation of the positive historical trend or a temporary detour?
N. Muradov 

Artificial photosynthesis as a frontier technology for energy sustainability
Thomas Faunce, Stenbjorn Styring, Michael R. Wasielewski, Gary W. Brudvig, A. William Rutherford, Johannes Messinger, Adam F. Lee, Craig L. Hill, Huub deGroot, Marc Fontecave, Doug R. MacFarlane, Ben Hankamer, Daniel G. Nocera, David M. Tiede, Holger Dau, Warwick Hillier, Lianzhou Wang and Rose Amal

The role of biofuels in the future energy supply
Luis Caspeta, Nicolaas A. A. Buijs and Jens Nielsen

On the importance of reducing the energetic and material demands of electrical energy storage
Charles J. Barnhart and Sally M. Benson

An optimization-based assessment framework for biomass-to-fuel conversion strategies
Jiyong Kim, S. Murat Sen and Christos T. Maravelias

Use of polypyrrole in catalysts for low temperature fuel cells
Xianxia Yuan, Xin-Long Ding, Chao-Yang Wang and Zi-Feng Ma

Challenges of non-aqueous Li–O2 batteries: electrolytes, catalysts, and anodes
Fujun Li, Tao Zhang and Haoshen Zhou

Fancy submitting an article to EES? Then why not submit to us today!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Period heat source gives thermoelectric power a boost: EES article in Chemistry World

Scientists in the US have found a way to improve the efficiency of thermoelectric power generators (TPGs) – devices designed to convert heat directly into electricity.

TPGs require a heat source, a thermoelectric material that converts heat to electricity, and a power generator. Such devices could be used to recycle heat from power plants or motor vehicles, and could even find use in solar energy conversion. Current research is focused on improving the conversion efficiency of thermoelectric materials but, to date, all proposed designs are either difficult to scale up or uneconomical to produce commercially. Yan Yan and Jonathan Malen at Carnegie Mellon University in Pittsburgh, Pennsylvania, are aiming to solve these problems and have instead focused on changing the type of heat source used.

© Shutterstock

Interested to know more? Read the full article in Chemistry World here…

Periodic heating amplifies the efficiency of thermoelectric energy conversion
Yan Yan and Jonathan A. Malen
Energy Environ. Sci., 2013,6, 1267-1273
DOI: 10.1039/C3EE24158K

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New EES Advisory Board Member: Dr Chris McNeill

Photograph of Professor Chris McNeillWe are pleased to announce that Dr Chris McNeill of Monash University in Australia has joined the Advisory Board of Energy & Environmental Science.

Chris obtained his Bachelor of Mathematics, Bachelor Science with Honours and PhD from the University of Newcastle, UK. He spent six years at the University of Cambridge, UK, as a Research Associate and an EPSRC Advanced Research Fellow, before taking up his position as Senior Lecturer and Future Fellow with the Department of Materials Engineering at Monash in 2011.

His research interests include organic semiconductor device physics, polymer solar cells, organic field-effect transistors, structural properties of organic semiconductor films and synchrotron-based soft x-ray techniques.

Chris’ recent EES Perspective on all-polymer solar cells has been well received by the community – do take a look at this fascinating overview of the field:

Morphology of all-polymer solar cells
Christopher R. McNeill
Energy Environ. Sci., 2012, 5, 5653-5667
DOI: 10.1039/C2EE03071C

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

11th International Conference on Materials Chemistry (MC11): registration now open

MC11

We are delighted to announce that registration for the 11th International Conference on Materials Chemistry (MC11) is now open.

Why take part in this conference?

In the 20th year of this international Materials Chemistry conference series, this meeting will bring together researchers from across this exciting field to discuss four key areas of application of materials chemistry:

  • Energy Materials – including all aspects of Materials Chemistry related to energy generation, conversion and storage.
  • Environmental Materials – the design, synthesis and applications of materials that facilitate processes to provide a sustainable environment.
  • Biomaterials – materials for tissue engineering and healthcare, green biomaterials and advanced synthesis methods of biomaterials.
  • Electronic, Magnetic and Optical Materials – encompassing inorganic, organic, hybrid and nano materials, soft matter and interfaces.

Registering early guarantees you an early bird discount of £50 – so register now. . And you can showcase your own work by presenting a poster.

MC11 will appeal to academic and industrial scientists working on the chemistry, physics and materials science of functional materials.  Come and hear the best in the field and take advantage of many opportunities for discussion with other researchers in materials chemistry.

For more information visit: http://rsc.li/mc11

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

High-capacity MOF shows clean fuel promise: EES article in Chemistry World

Metal organic frameworks (MOFs) could be the answer to the problem. These materials – which comprise metal ions connected by organic linkers – are able to store high quantities of gas at lower pressures than are required by traditional gas cylinders, for example. But their low capacity and the scale on which they can be synthesised have prevented their practical use so far.

Vehicles powered by natural gas are cleaner than those running on petrol, and are of increasing interest to those living in countries that have to import oil.  But the high pressures at which gas must be stored require expensive materials and distribution infrastructures, as well as radically different vehicle designs.

 Interested to know more? Read the full article in Chemistry World here…

Read the article from EES:

Gram-scale, high-yield synthesis of a robust metal–organic framework for storing methane and other gases
Christopher E. Wilmer ,  Omar K. Farha ,  Taner Yildirim ,  Ibrahim Eryazici ,  Vaiva Krungleviciute ,  Amy A. Sarjeant ,  Randall Q. Snurr and Joseph T. Hupp
Energy Environ. Sci., 2013, Advance Article
DOI:10.1039/C3EE24506C
 
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)