Archive for the ‘Article collections’ Category

Editor’s Collection: Meet the authors – Sperry and Devlin

Rory Devlin (Left) and Jonathan Sperry (Right)

Introducing the researchers:

Rory Devlin received a BSc (Hons) from The University of Auckland in 2017. Currently, he is pursuing his PhD at the same institution under the supervision of Assoc. Prof. Jonathan Sperry, exploring novel biomimetic rearrangements towards the synthesis of alkaloid natural products.

 

Jonathan Sperry completed his Ph.D at the University of Exeter, working on the biomimetic synthesis with Professor Chris Moody. After postdoctoral research with Dame Margaret Brimble FRS at the University of Auckland, he was appointed to a lectureship at the same institution in 2009. Jon was a Royal Society of New Zealand Rutherford Discovery Fellow from 2014-2019.

 

What inspired you to write this review?

Our interest in the nudicaulins was mainly from a synthetic perspective and in particular, validating the unique cascade process in their proposed biosynthesis. We were surprised nobody had written about the nudicaulins before, especially given their fascinating history.

 

What experimental research are you carrying out in the area?

We are using the nudicaulin structure as a lead for drug discovery – the synthetic route to the natural product is very amenable to analogue design. We are also collaborating with Professor Bernd Schneider at the Max Planck Institute for Chemical Ecology to better understand the role and distribution of the nudicaulins.

 

How do you hope this review will inspire future study?

Synthetic chemists’ interest in natural products is generally focused on structure and bioactivity, but this is just the tip of the iceberg – there is so much more to learn and the nudicaulins are a great example. When we choose a natural product for synthesis studies, we now aim to understand why the organism produces the compound which has has led to some great collaborations and research projects I would have never had imagined being involved in a few years ago.

 

Read the full article: The curious yellow colouring matter of the Iceland poppy

 

See the other articles showcased in this month’s Editor’s Collection

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Editor’s Collection: Meet the authors – Fascione et al.

From left to right: Robin Brabham, Tessa Keenan and Martin Fascione

Introducing the researchers:

Martin Fascione received his Ph.D. from the University of Leeds in 2009, working with W. Bruce Turnbull on synthetic carbohydrate chemistry. Following a Marie Curie fellowship with Prof. Steve Withers, FRS, in Vancouver and Prof. Gideon Davies, FRS, at the University of York (2012-2014), he took up a lectureship within Chemistry at York in August 2014. His research interests include the chemical glycobiology of rare sugars, synthetic carbohydrate chemistry, and the chemical/enzymatic modification of proteins.

 

Robin Brabham completed his PhD studies in the Fascione group in 2020. His thesis explored the use of amber stop codon suppression as part of new methods for the incorporation of reactive aldehydes into proteins for bioconjugations.

 

Tessa Keenan received her PhD in 2017 from the University of York on protein O-mannosylation. Since completing her PhD, she has undertaken postdoctoral training in the Fascione group in the areas of chemical glycobiology and protein bioconjugation.

 

What inspired your research in this area?

We recently developed an exciting method for modifying proteins (Chem. Sci., 2018, 9, 5585-5593), using reactive a-oxo aldehydes in proteins, but a challenge of this work was extending it to any position within the protein. Periodate oxidation of vicinal diols, or amino alcohols has long been a common method to generate aldehydes in sugar and protein chemistry, it therefore seemed an obvious next step to incorporate such a motif into an unnatural amino acid.

 

What do you personally feel is the most interesting outcome of your study?

The ability to incorporate the a-oxo aldehyde internally within proteins is potentially very powerful for future bioconjugation studies. However, the most interesting outcome of the paper is arguably the realisation that the classical unmasking of aldehydes by sodium periodate oxidation is hindered in PBS, a very common buffer for handling proteins.

 

What directions are you planning to take with your research in future?

Our primary focus is the study sugars at the interface between chemistry and biology, with an emphasis on understanding the roles they play in disease and using this knowledge to develop innovative new therapeutics. To achieve this goal we have been developing new methods for synthesising sugars and modifying proteins using aldehyde handles, and are currently using this toolkit to address unanswered questions in a wide range of diseases, including prostate cancer and leishmaniasis.

 

Read the full article: Rapid sodium periodate cleavage of an unnatural amino acid enables unmasking of a highly reactive α-oxo aldehyde for protein bioconjugation

 

See the other articles showcased in this month’s Editor’s Collection

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Editor’s Collection: Meet the authors – Saito and Yagai

Takuho Saito and Shiki Yagai

Introducing the researchers:

Takuho Saito was born in 1996 in Tochigi, Japan. He graduated Chiba University in 2019, and is currently a master’s student under the guidance of Prof. Shiki Yagai at the same University.

Shiki Yagai was born in 1975 in Japan and received his PhD in 2002 at Ritsumeikan University. Then he directly became an assistant professor at Chiba University, and became an associate professor in 2010. In July 2017, he became a full professor in Chiba University. Find out more on his lab webpage.

 

What inspired your research in this area?

We are always inspired by natural molecules and macromolecules to organize into intricate nanostructures, wherein non-covalent interaction such as hydrogen bonds play important role to achieve hierarchical assembly of structures.

 

What do you personally feel is the most interesting outcome of your study?

The answer is definitely the fact that just changing the direction of amide groups remarkably improved the thermal stability of our nano-aggregates, as prof. Hackenberger said.

 

What directions are you planning to take with your research in future?

We are very much interested in the introduction of more amide groups to further improve thermal stability. At the same time, we are interested in the interplay of photoisomerization of azobenzene units and supramolecular chirality.

 

Read the full article: Hierarchical self-assembly of an azobenzene dyad with inverted amide connection into toroidal and tubular nanostructures

 

See the other articles showcased in this month’s Editor’s Collection

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Editor’s Collection: Meet the authors – Nielsen, Gothelf and Clo

From left to right: Kurt Gothelf , Emiliano Clo and Thorbjørn Nielsen

 

Introducing the researchers:

Thorbjørn Nielsen: Obtained an MSc. Degree from the Gothelf lab in 2016. He then enrolled in a joint PhD program between Novo Nordisk in Måløv and Aarhus University where he spent half of his time in each place. He graduated in 2020 and is currently a postdoc at the Gothelf lab.

Kurt Gothelf graduated in 1995 from the group of Professor K. A. Jørgensen at Aarhus University. Following a post doctoral stay in Professor M. C. Pirrung’s group at Duke University, USA, he joined the faculty at Aarhus University in 2002 as an Associate Professor. Since 2007 he has been a Full Professor working with bioconjugation, DNA nanotechnology and biosenors. Find out more on his lab webpage.

Emiliano Clo obtained his PhD in Organic Chemistry in 2006 from the Gothelf lab at Aarhus University. He took post doctoral positions from 2007-9 with Prof. Knud Jensen at University of Copenhagen and from 2009-12 in Prof. Henrik Clausen’s Copenhagen Center for Glycomics, spending the last year of which as Research Associate Professor. From 2012, Emiliano works as a Senior Research Scientist at Novo Nordisk’s Research Chemistry Unit.

 

What inspired your research in this area?

Bioconjugation is challenging and both at Novo Nordisk and in the Gothelf group at Aarhus University we follow closely the development of bioconjugation techniques. Itaru Hamachi’s work on directed conjugation strategies has definitely been a steady influence over the years. But, the present study is really an amalgamation of ideas from many sources.

 

What do you personally feel is the most interesting outcome of your study?

The most surprising observation was to learn that the conjugation pattern was identical, in spite of the varying the length of the three reagents studied.

 

How do you feel your research has benefitted from collaborating between industry and academia? 

It has been of key importance to the project. Thorbjørn Nielsen (who got his MSc. with Prof. Gothelf) brought the required skillset to Novo Nordisk. Novo Nordisk then provided the materials and equipment required for this project. Together we could pull all the support the projected needed: MS-MS and SPR expertise at Novo Nordisk; cell assays and FACS from Aarhus Unversity. Last, but not the least, Apigenex, Novo’s long-time CRO partners, synthesized the reagents needed.

 

What directions are you planning to take with your research in future? 

Concerning bioconjugation, our future aims are twofold. First, to find reactions that can label proteins quantitatively; second, to devise reagents and protocols that can be applied to more complex proteins or in more complex matrices.

 

Read the full article: disulphide-mediated site-directed modification of proteins

 

See the other articles showcased in this month’s Editor’s Collection

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Editor’s Collection: Christian Hackenberger

The Organic & Biomolecular Chemistry Editor’s collection is a showcase of some of the best articles published in the journal, hand selected by our Associate Editors and Editorial Board members. For this inaugural selection, Associate Editor Christian Hackenberger has highlighted some of his favourite recent works. Take a look at what he thought of the articles below, and find out more about the research and the researchers behind the papers in our interviews with the authors.

Christian’s Selection:

Hierarchical self-assembly of an azobenzene dyad with inverted amide connection into toroidal and tubular nanostructures

Christian’s comments: “Small things can make a difference! Check out this very interesting paper by Yagai et al on how inverting an amide bond in foldable azobenzene dyads changes the thermal stability of self-assembled toroids and nanotubes! Amazing! This paper is part of our collection Supramolecular chemistry in OBC.

 

Find out more in our interview with the authors

 

Rapid sodium periodate cleavage of an unnatural amino acid enables unmasking of a highly reactive α-oxo aldehyde for protein bioconjugation

Christian‘s comments: “Now available site-specifically! This contribution by Fascione and coworkers expands the use of Strain-Promoted Alkyne-Nitrone Cycloaddition (SPANC) ligation to modify internal α-oxo aldhehydes in proteins. Particularly remarkable is that this work describes a rare example of site-specifically incorporated aldehyde into proteins via amber stop codon suppression. Well done folks!

 

Find out more in our interview with the authors

 

Site-selective modification of proteins using cucurbit[7]uril as supramolecular protection for N-terminal aromatic amino acids

Christian‘s comments: “A supramolecular protecting group in peptide and protein chemistry! This paper I handled myself and I agree with the reviewers that this is a nice piece of work. Appel and coworkers make clever use of cucurbit[7]uril, which blocks the nucloephilicity of an N-terminal phenylalanine. Quite handy for the selective modification of the N-terminal glycine of the A-chain in insulin!

Find out more in our interview with the authors

 

Disulphide-mediated site-directed modification of proteins

Christian’s comments: “Gothelf and Clo from Aarhus University and Novo Nordisk report in this paper the modification of lysines in pharmaceutically relevant proteins and antibody fragments. What is special about their work is that only lysines are modified in proximity to solvent-exprosed disulfides by clever design of a bifunctional reagent, which consits of a rebridging moiety, a masked thiol and an amine reactive group. One can only wish that more of such innovative collaborations between industry and academia are reported.

Find out more in our interview with the authors

 

The Curious Yellow Colouring Matter of the Iceland Poppy

Christian’s comments: “And finally an awesome historical overview on an intruiging yellow colored natural product, the nudicaulin. This flavoalkaloid was named by Sir Robert Robinson in 1939. Devlin and Sperry take the reader through a fascinating journey on the first structural assignment, synthesis strategies, biosynthesis and biological role. A must read not only for the natural product chemists among us!

Find out more in our interview with the authors

 

Meet the Editor:

Christian P. R. Hackenberger completed his graduate studies in chemistry at the universities of Freiburg and UW Madison and his doctoral studies in 2003 at the RWTH Aachen. After a postdoctoral position at MIT, he started his own group at the Freie Universität Berlin in 2005. In 2012, he was appointed Leibniz-Humboldt Professor for Chemical Biology at the Leibniz-Research Institute for Molecular Pharmacology and the Humboldt Universität zu Berlin.

His group works on the development of new chemoselective and bioorthogonal reactions, the identification and analysis of novel PTMs, the engineering of protein-based pharmaceuticals and novel approaches to functional protein synthesis and delivery, in particular for the labeling and modification of different antibody formats. He is co-founder of the recently founded company ‘Tubulis’, which ventures into engineering better tolerable cancer drugs based on protein- and antibody-drug conjugates.

Christian is an Associate Editor for Organic & Biomolecular Chemistry since 2015 and on the Advisory board of Chemical Science and RSC Chemical Biology. His research group can be followed on Twitter @PhosphorusFive.

Outside his chemistry life he enjoys all forms of sport (Federer!), foodie (Ottolenghi!) and cultural (Theatre! Contemporary Art! Opera!) activities.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Editor’s Choice: Santanu’s recommended articles

Professor Santanu Mukherjee (Indian Institute of Science, Bangalore), recently joined the Organic & Biomolecular Chemistry team as an Associate Editor. Santanu works in the field of asymmetric catalysis, with a focus on the discovery of new enantioselective transformations. His research group investigates hydrogen bonding, Lewis base and bifunctional catalysis, and more recently, he has focused on iridium-catalyzed asymmetric allylic substitution reactions.

 

To find out more about Santanu, take a look at our recent blog welcoming him to the team.

 

Santanu has picked out a selection of his personal favourite recent OBC articles which you can read now for free*

 

Santanu’s Recommended OBC Articles:

 

Catalyst-controlled positional-selectivity in C–H functionalizations

Virendra Kumar Tiwari and Manmohan Kapur

 

 

 

An enantioselective synthesis of α-alkylated pyrroles via cooperative isothiourea/palladium catalysis

W. Rush Scaggs, Toya D. Scaggs and Thomas N. Snaddon

 

Organocatalytic asymmetric synthesis of highly substituted pyrrolidines bearing a stereogenic quaternary centre at the 3-position

Soumendranath Mukhopadhyay and Subhas Chandra Pan

 

Total synthesis of incargranine A

Patrick D. Brown and Andrew L. Lawrence

 

 

 

 

Studies toward the synthesis of strevertenes A and G: stereoselective construction of C1–C19 segments of the molecules

Tapan Kumar Kuilya, Subhendu Das, Dhiman Saha and Rajib Kumar Goswami

 

Formal [4 + 2] benzannulation of 2-alkenyl indoles with aldehydes: a route to structurally diverse carbazoles and bis-carbazoles

Ankush Banerjee, Avishek Guin, Shuvendu Saha, Anushree Mondal and Modhu Sudan Maji

 

Vinylogous acyl triflates as an entry point to α,β-disubstituted cyclic enones via Suzuki–Miyaura cross-coupling

Daria E. Kim, Yingchuan Zhu and Timothy R. Newhouse

 

 

 

 

*Access is free until 28/02/2019 through a registered RSC account.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Harnessing biosynthetic pathways to efficiently derivatize biologically active natural products

Nature is unrivaled in its ability to produce structurally complex molecules with high biological potency. Natural products have been used medicinally for centuries and have provided a profitable source of potential drug leads. Developing efficient strategies for their total synthesis, as well as the production of analogues, has always been challenging.

In a recent OBC publication, Professor Shuangjun Lin of Shanghai Jiao Tong University has identified a key enzyme in the biosynthesis of the natural product, Streptonigrin, a highly fictionalized aminoquinone isolated from the bacterium Streptomyces flocculus.

 

Streptonigrin has a long history and has attracted considerable attention from both the synthetic and biochemical communities due to its challenging molecular framework and potent antimicrobial and broad-spectrum anticancer activities. In the 1970’s, Streptonigrin reached phase-II clinical trials, though ultimately failed due to high levels of toxicity and side effects. Nevertheless, interest in its medicinal properties still remains, and many studies detailing its chemical and biosynthesis have been reported, with the hopes of enabling the production of Streptonigrin-based analogues, which would mitigate the natural product’s cytotoxicity while harnessing is broad biological capabilities.

Prof. Lin reports that previous genetic and biochemical studies successfully identified a key β-carboline (3) intermediate in the biosynthetic pathway of Streptonigrin. The β-carboline moiety is a common structural feature within a large group of natural and synthetic indole alkaloids however, the enzymes catalyzing their formation have not been well characterized or reported. Lin and coworkers have identified a protein, StnK2, which they propose catalyzes a Pictet-Spengler reaction responsible for β-carboline formation from (2S,3S)-β-methyl tryptophan and erythrose (Figure).

The study focussed on the biochemical characterization of StnK2 as a Pictet-Spenglerase, analyzing in detail its stereoselectivity and substrate specificity. StnK2 exhibited exclusive aldehyde specificity, though was flexible towards various tryptophan analogues. Additionally, StnK2 demonstrated high stereoselectivity, only recognizing S-enantiomers and producing the (R)-C-1 of the β-carboline scaffold.

This study has not only contributed to our knowledge of Pictet-Spenglerase enzymes, but has established a new means through which Streptonigrin analogues can be efficiently generated and their medicinal properties explored.

To find out more see:

StnK2 catalysing a Pictet–Spengler reaction involved in the biosynthesis of the antitumor reagent streptonigrin
Xiaozheng Wang, Dekun Kong, Tingting Huang, Zixin Deng and Shuangjun Lin
DOI:10.1039/C8OB02710B

For more papers from the OBC Biosynthesis Themed Collection


Victoria Corless completed her Ph.D. in organic chemistry with Prof. Andrei Yudin at the University of Toronto. Her research centered on the synthesis of kinetically amphoteric building blocks with particular emphasis on creating novel biologically active molecules. She is passionate science and communicating new discoveries to enhance science literacy.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Novel application of fluorescent peptide displacement for small molecule screens against RNA targets

Recent advances in our understanding of RNA have expanded its role beyond just a carrier of genetic information. Modern views of RNA encompass a diverse range of molecules, which play a central role in modulating a number of important biological processes, including the progression of various cancers and nontumorigenic diseases.

In her recent OBC publication, Professor Amanda Hargrove of Duke University has created a general, high throughput screening technique for the identification of small molecule inhibitors of different RNA proteins using a fluorescence indicator displacement (FID) assay.

Small molecule RNA inhibitors offer advantages such as enhanced absorption, distribution, and oral bioavailability over commonly employed oligonucleotides used in antisense technologies. Fluorescence-based assays are widely used techniques used to screen small molecule libraries, however, the incorporation of fluorescent tags can lead to alterations in the RNA’s native structure and often pose synthetic challenges. FID, on the other hand, is a ‘tagless’ approach in which the indicator displays different fluorescent properties in the presence or absence of an oligonucleotide.

The Hargrove group implemented the Tat FID assay in order to simultaneously screen a library of small molecules against multiple RNA targets. This provides an efficient means of measuring binding affinity as well as evaluating specificity. The Tat FID assay requires a Tat peptide construct labeled with a Förster Resonance Enhancement Transfer (FRET) pair—a 5-carboxyfluorescein (FAM) at the N-terminus and 5-carboxytetramethylrhodamine (TAMRA) at the C-terminus (see figure). When the peptide is bound to RNA, the distance between fluorophores allows for excitation of FAM and emission detection from TAMRA. Displacement of the Tat peptide results in quenching of the fluorescent signal, which can be used to quantify binding affinity.

A library of 30 small molecules (including known RNA binding small molecules) was screened against four select RNA structures. The assay was successful in identifying hits for all four RNA molecules and identified indiscriminate and differential binding of individual small molecules. Binding results correlated with known literature results and statistical analysis was used to clarify the relationship between small molecule structures/RNA based on their binding affinity and selectivity.

As with any fluorescence-based assay, the Tat FID assay possesses inherent limitations. However, it has been shown to be a powerful high throughput technique as a result of its ease of operation, low concentration requirement for both ligand and target, and its ability to rapidly assess small molecule/RNA binding interactions.

To find out more see:

Fluorescent peptide displacement as a general assay for screening small molecule libraries against RNA
Neeraj N. Patwardhan, 
DOI:10.1039/C8OB02467G


Victoria Corless has recently completed her Ph.D. in organic chemistry with Prof. Andrei Yudin at the University of Toronto. Her research is centered on the synthesis of kinetically amphoteric building blocks which offer a versatile platform for the development of chemoselective transformations with particular emphasis on creating novel biologically active molecules. She is passionate about communicating new discoveries to enhance science literacy.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Unexpected divergent reactivity in Pt-catalyzed cyclizations of 1,5-bisallenes

As a result of their unique physical and chemical properties, allenes have become key building blocks in modern organic synthesis. The discovery and development of their varied reactivity have been extensively reported on in recent years, however, application to more challenging bisallene systems has been comparatively limited.

In her group’s recent OBC publication, Prof. María Paz Muñoz of the University of East Anglia sought to fill this gap in the bisallene literature. The study discusses the development of an unprecedented Pt-catalyzed cyclization of 1,5-bisallenes in the presence of oxygen nucleophiles to selectively access 6- and 7-membered rings.

After initial screening, it was observed that selectivity was highly sensitive to the reaction conditions and could, therefore, be tuned to yield the desired molecular scaffold. Interestingly, in the presence of nucleophilic alcohols, vinyltetrahydropyridines are formed preferentially while the formation of di- and tetrahydroazepines are favoured when water is used.

Exhaustive mechanistic studies provided insight into this divergent reactivity. It was determined that different mechanisms operate depending on the nucleophile and electronic nature of the bisallene (as a result of its nitrogen tether). It is proposed that, in the presence of nucleophilic alcohols, 6-membered vinyltetrahydropyridines are preferentially formed as a result of a platinum hydride active catalyst—which are known to form from platinum complexes and alcohols. Tetrahydroazepines, on the other hand, are favoured when water is used as the nucleophile, proceeding first through a nucleophilic attack followed by carbocylization to form the 7-membered ring.

Understanding this complex mechanistic behaviour provides important insight into bisallene reactivity and will no doubt enhance the scope of this work’s application in organic and medicinal chemistry.

This communication is part of the OBC themed collection, Mechanistic Aspects of Organic Synthesis. You can read the rest of the collection here.

 

To find out more see:

Nucleophile dependent formation of 6- and 7-membered N-heterocycles by platinum-catalysed cyclisation of 1,5-bisallenes
María Teresa Quirós,César Hurtado-Rodrigo and María Paz Muñoz
DOI:10.1039/C7OB01469D


Victoria Corless is currently completing her Ph.D. in organic chemistry with Prof. Andrei Yudin at the University of Toronto. Her research is centred on the synthesis of kinetically amphoteric building blocks which offer a versatile platform for the development of chemoselective transformations with particular emphasis on creating novel biologically active molecules.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Self-assembly of bioactive peptides, peptide conjugates, and peptide mimetic materials

Molecular self-assembly has become one of the most prominent fields of nanotechnology in recent years. Inspired by nature, many scientists around the world are attempting to utilize it as a tool to design novel nanostructures with desired biomedical properties.

To achieve this goal, it is necessary to understand how self-assembly works and how molecular forces and other conditions drive this self-assembly and define the structure of a specific supramolecular complex.

In a recent Organic & Biomolecular Chemistry publication, Professor Charlotte J. C. Edwards-Gayle and Professor Ian W. Hamley from the University of Reading, UK, have reviewed some of the most prominent self-assembled peptide amphiphiles and their potential applications. These include tissue scaffolds, antimicrobial peptides and drug transporters.

One of the distinct features of self-assembling amphiphiles, which makes them attractive candidates for many applications, is their diversity to form various structures such as micelles, vesicles, nanotubes, fibrils and sheets (Fig.1). The self-assembly of PAs can also be tuned by several factors including amino acid sequence, peptide length, temperature, pH, and concentration.

 

These features make them perfect, novel tools to create biomaterials which can be responsive to different environmental cues. However, the review points out that the key question of whether there is a relationship between bioactivity and self-assembly of peptide amphiphiles has still remained unanswered, despite the advancement in the field.

Extending the success in designing various structures, together with distinct applications, have made peptide amphiphile self-assembly a vibrant field in which researchers will continue to develop functional constructs with novel applications.

To find out more please see:

Self-assembly of bioactive peptides, peptide conjugates, and peptide mimetic materials
Charlotte J. C. Edwards-Gayle and Ian W. Hamley
DOI: 10.1039/C7OB01092C


Zahra Bahrami Dizicheh is a PhD candidate in molecular biology with Dr. Giovanna Ghirlanda at Arizona State University. She does research on photo-electrochemical hydrogen production with designing and developing interconnection between conductive materials and redox proteins to develop dye-sensitized photo-electrochemical cells.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)