Archive for July, 2021

Editor’s Collection: Meet the authors – Michael L. Singleton et al.

Authors : (From left to right) Dr. Ya-Zhou Liu, Dr. Xiao Mu, Dr. Chieh-Kai Chan, Dr. Koen Robeyns, Dr. Cheng-Chung Wang, Dr. Michael Singleton

Introducing the researchers:

Dr. Ya-Zhou Liu was born in Linyi, China. He received his MSc degree from Guizhou University in 2015 under the supervision of Prof. Weidong Pan. He then joined the Université Catholique de Louvain for his PhD degree under the supervision of Prof. Istvan E. Marko on the development of indole chalcones for non-apoptotic cancer cell death. In 2017, he joined Prof. Michael L. Singleton’s group to continue his PhD research under the topic of using non-covalent interactions to control fluxional molecules into ordered conformations. After receiving his PhD degree in 2020, he joined the Chengdu Institute of Biology (CIB), Chinese Academy of Sciences as an assistant research fellow with Prof. Xiaofeng Ma, working on the development of enzyme-mimetic catalysts.

Dr. Xiao Mu was born in Zibo, China. She received her MSc degree from Zhejiang Normal University in 2015. In 2016, she arrived in Belgium and started her doctoral studies sponsored by the China Scholarship Council under the supervision of Prof. Michael Singleton on the topic of histidine brace-containing ligand scaffolds for developing biomimetics of lytic polysaccharide monooxygenases. She received her PhD degree in 2020.

Dr. Chieh-Kai Chan received his B.S. from the Department of Medicinal and Applied Chemistry, Kaohsiung Medical University in 2012. He later obtained his M.S. in 2014 and PhD in 2017 in the same department under the supervision of Prof. Meng-Yang Chang . He has been performing his postdoctoral studies with Prof. Cheng-Chung Wang in the Institute of Chemistry at Academia Sinica since 2017, and was awarded the Postdoctoral Scholar Program from Academia Sinica in 2018 and 2020. His current research interests are carbohydrate chemistry, the development of methodologies on small molecules and their applications on drug screening.

Dr. Koen Robeyns was born in Flanders, Belgium. He started undergraduate studies in chemistry at the KULeuven, Kortrijk, and completed his graduate studies at the KULeuven, Leuven, where he was first introduced to crystallography. He began his PhD studies in 2002 on the structural determination of modified DNA sequences, which he defended in 2006. After some years of postdoctoral research, combining both small-molecule and macromolecular crystallography, he moved to the UCLouvain, where he now works as permanent researcher in charge of single crystal studies.

Dr. Cheng-Chung Wang is an Associate Research Fellow at the Institute of Chemistry, Academia Sinica, Taiwan. He received his Ph.D. from TIGP, Academia Sinica under the supervision of Prof. Shang-Cheng Hung in 2008. He joined Prof. Peter H. Seeberger’s laboratory for his postdoctoral research at ETH, Switzerland, in 2008, and then moved to the Max-Planck-Institute of Colloids and Interfaces with Prof. Seeberger in 2009. He started his independent career in 2010, and his group in Academia Sinica is currently focusing on stereoselective glycosylation reactions, the synthesis of complex carbohydrate molecules and facile preparations of small molecules.

Dr. Michael Singleton received his PhD in 2010 from Texas A&M University under the supervision of Prof. Marcetta Darensbourg. He then moved to Bordeaux, France, where he worked as a Marie Curie Postdoctoral Fellow at the European Institute for Chemistry and Biology, working with Prof. Ivan Huc. In 2014, he started his independent career in the Institute of Condensed Matter and Nanoscience at the Université Catholique de Louvain in Belgium. His group’s research focuses on the synthesis and structural control of self-organized/self-assembled molecular architectures for mimicking the reactivity of biological molecules.


What inspired your research in this area?

Large-scale conformational changes in certain proteins can lead to switching of their function or self-assembly properties. Mimicking this process with synthetic oligomers can be used to control self-assembly, permit exchange between larger self-assembled structures, or to change interactions with small molecules.  The current work stems from this idea and our interest in understanding factors that can influence the stability of different folded states.

What do you personally feel is the most interesting/important outcome of your study?

The fluxional character of aromatic oligoamides is not only important as it relates to the stability of their structures, but also to their applications in molecular recognition and catalysis. As numerous members of this type of foldamer have been shown to bind discrete water molecules in the solid state and/or solution, this study highlights the influence this binding can have on the fluxional properties of the oligomer.

What directions are you planning to take with your research in future? What are you going to be working on next?

In the near future, the next steps will be finding conditions or sequences that allow stabilizing or switching to other conformations, for example helices or double helices. Ultimately, it will be interesting to use this conformational exchange to permit one aromatic oligoamide  sequence to perform multiple distinct functions, for instance, incorporating catalytic sites and switching between different catalytic reactions.

 

Read the full article: Water binding stabilizes stacked conformations of ferrocene containing sheet-like aromatic oligoamides

See the other articles showcased in this month’s Editor’s Collection

See every article in the full Editor’s Collection

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Editor’s Collection: Meet the authors – Dr Guilhem Chaubet and Dr Alain Wagner et al.

Dr Alain Wagner and Dr Guilhem Chaubet

Introducing the researchers:

Dr Guilhem Chaubet is the co-director of the Biofunctional Chemistry team in Strasbourg. He joined the CNRS as an independent researcher in 2017 after a PhD at the University of Montpellier II (2010-2013) and a postdoctoral position at the University of Oxford (2014-2017). He investigates chemical conjugation of native proteins, focusing especially on the development of new strategies.

Dr Alain Wagner was born in Saint Avold, France in 1964.  After graduate studies at Strasbourg University under the supervision of Prof.Charles Mioskowski, he took up a postdoctoral fellowship at Affymax Research, Palo Alto, working under the supervision of Prof. Peter Schultz. He entered the CNRS in 1994. In 2001, he co-funded the company Novalix, now one of largest CROs in France. He returned to academic research in 2007 to start the biofunctional chemistry team. In 2014, he co-funded Syndivia, a start-up exploiting new bioconjugations and linker technologies in the field of ADC, and a few months ago, embarked on a new adventure of single cell secretion analysis by co-funding MicroOmiX. His current research focuses on studying chemical reactivity in complex biological systems with applications in drug delivery and droplet microfluidic-based single cell analysis.


What inspired your research in this area?

This work originated almost 10 years ago, when we started investigating in-vivo drug inactivation via strain-promoted azide-alkyne cycloaddition (SPAAC). We had selected an azide analogue of warfarin as our model drug and proved that its anticoagulant activity could be neutralized in mice after injection of a PEG-containing strained alkyne. While this work ended up being published a few years ago, it was during the course of its development that we noticed this odd behaviour of SPAAC being accelerated in human plasma compared to traditional solvent mixtures. Being puzzled by this observation, we decided to dig deeper, which ultimately led to this work published in OBC.

What do you personally feel is the most interesting/important outcome of your study?

I think it is the revision of classical synthetic chemistry rules when reactions are conducted in such a complex medium rather than in a flask, where you can precisely control the environment. Bioorganic chemistry thus challenges the way chemists think about and design their experiments, which fosters innovation and originality.

What directions are you planning to take with your research in future? What are you going to be working on next?

We keep working on new methodologies to access site-specific conjugation of native proteins, which ultimately could lead to protein-selective strategies and applications of these reactions in complex biological media.

 

Read the full article: Plasma induced acceleration and selectivity in strain-promoted azide–alkyne cycloadditions

See the other articles showcased in this month’s Editor’s Collection

See every article in the full Editor’s Collection

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Editor’s Collection: Judy I-Chia Wu

The Organic & Biomolecular Chemistry Editor’s collection is a showcase of some of the best articles published in the journal, hand selected by our Associate Editors and Editorial Board members. For this month’s selection, Judy I-Chia Wu has highlighted some of her favourite recent works. Take a look at what she thought of the articles below, and find out more about the research and the researchers behind the papers in our interviews with the authors.

Judy’s Selection:

Water binding stabilizes stacked conformations of ferrocene containing sheet-like aromatic oligoamides

Ya-Zhou Liu, Xiao Mu, Cheih-Kai Chan, Koen Robeyns, Cheng-Chung Wang and Michael L. Singleton

Judy’s comments: “Water binding is known to play an important role in stabilizing the structures of many biopolymers such as DNA, lignin, and protein structures. Here, Singleton and co-workers show that water binding also can be used to control fluxional movements of foldamers, highlighting an underappreciated aspect of conformation control in synthetic oligomers.

Find out more in our interview with the authors


Plasma induced acceleration and selectivity in strain-promoted azide–alkyne cycloadditions

David Warther, Enes Dursun, Marion Recher, Sylvain Ursuegui, Michel Mosser, Joanna Sobska, Wojciech Krezel, Guilhem Chaubet and Alain Wagner

Judy’s comments: “Strain-promoted azide–alkyne cycloadditions (SPAAC) are an important class of bioorthogonal reactions, but kinetic studies of these reactions have been limited to solvents and mixtures that do not reflect the environment of in vivo systems. Here, Chaubet, Wagner and co-workers report the important effects of considering a complex medium, opening doors to studying in vivo applications of SPAAC reactions.”

Find out more in our interview with the authors


Recent advances in single-benzene-based fluorophores: physicochemical properties and applications

Jaehoon Kim, Ji Hyeon Oh and Dokyoung Kim

Judy’s comments: “Organic molecule-based fluorophores are opening a new era in biology and materials science. In this review, Kim and co-workers summarize advances in the development of single-benzene-based fluorophores (SBBFs) in the past 15 years. It continues to amaze me how small and simple molecules as such can have such broad applications in chemistry!”


Meet the Editor:

Judy I-Chia Wu, OBC Editorial Board Member

Judy is a physical organic chemist and currently an Assistant Professor at the University of Houston. She received her Ph.D. in 2011 from the University of Georgia under the supervision of Professor Paul Schleyer.

Her current research interests span topics in ground and excited-state aromaticity and antiaromaticity, photochemistry, supramolecular chemistry, and enzyme catalysis.

 

 

 

 

 

 

 

 

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)