Towards a personalized therapy for peripheral nerve injuries

By Anna Stejskalova, Community Board Member.

Peripheral nerve injury is a common complication of surgical procedures and traumatic insults that can result in severe discomfort including chronic pain and sensory defects. Ensuring that the injured nerve regenerates is therefore critical for the long-term well-being of affected individuals. A promising therapeutic strategy to enhance regeneration is to target both the initial inflammation and subsequently promote axonal regrowth. How to deliver drugs sequentially and on time for each patient is a complex engineering challenge requiring innovative solutions.

Toward this end, Shan and the team developed a stimuli-responsive drug delivery scaffold for a dual drug delivery that makes it possible to target both inflammation and axonal sprouting sequentially. The team created a composite material that consists of a Poly-L-lactic acid (PLLA) shell that provides mechanical support to the regenerating axons and that can be loaded with the novel bioactive and stimuli-responsive scaffold.

Figure 1. Schematic illustration of the structure and drug release process of the responsive cascade drug delivery scaffold (RCDDS) for peripheral nerve injury repair. (A) A brief illustration of the structure of the RCDDS implanted in SD rat. (B) Drug release process of the RCDDS and the corresponding repair stage. Vitamin B12 loaded in the hydrogel system can be adjustably released in the early stage by ultrasound to alleviate inflammation, while NGF loaded in alginate microspheres and PLGA nanoparticles can be gradually released from the RCDDS to promote axon regeneration one month after implantation. Reproduced from DOI: 10.1039/D3MH01511D with permission from the Royal Society of Chemistry

To achieve a staggered drug release profile, the team encapsulated vitamin B12 (vB12) with anti-inflammatory properties directly inside calcium crosslinked alginate hydrogel and used an additional multilevel encapsulation approach consisting of microspheres loaded with nerve growth factor (NGF)-adsorbed nanoparticles enabling their delayed release compared to vB12. The team then leveraged ultrasound as a stimulus to hierarchically open polymer chains in ultrasound-responsive calcium cross-linked alginate hydrogels.  The rate of release of both vB12 and NGF was not predetermined and could be tuned by changing ultrasound intensity thus enabling the adjustment of the delivery profiles based on the individual patient’s healing progress. Interestingly, the ultrasound treatment alone improved peripheral nerve regeneration by promoting the secretion of neurotrophins in rodent models. Taken together, Shan and colleagues developed a novel strategy to promote nerve repair which utilizes ultrasound as an easily administrable stimulus that makes it possible to adjust the treatment of injured peripheral nerves based on patient’s needs.

To find out more, please read:

A responsive cascade drug delivery scaffold adapted to the therapeutic time window for peripheral nerve injury repair
Yizhu Shan, Lingling Xu, Xi Cui, Engui Wang, Fengying Jiang, Jiaxuan Li, Han Ouyang, Tailang Yin, Hongqing Feng, Dan Luo, Yan Zhang and Zhou Li
Mater. Horiz., 2024, Advance Article, DOI: 10.1039/D3MH01511D

 


About the blogger


 

Anna Stejskalova is currently a postdoctoral fellow at the Wyss Institute at Harvard Medical School and a member of the Materials Horizons Community Board. Dr. Stejskalova’s research focuses on female reproductive health and preterm birth utilizing organs on a chips and advanced biomaterials.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

NestedAE: An Interpretable Machine Learning Architecture for Predicting the Multi-Scale Performance of Materials

By Wen Shi, Community Board Member.

Quantitative prediction of material function based on multi-scale modeling is of vital importance for not only systematic performance optimization, but also precise materials design. Due to the nonintuitive and nontrivial structure-property relationship across different length scales, a comprehensive characterization of the hierarchical behavior of functional materials still remains a formidable challenge to date. To deal with this burning issue, recently Hernandez et al. made full use of data science techniques and developed an interpretable neural network architecture, viz. NestedAE, to link and quantify material properties across various length scales.

In NestedAE, an autoencoder is used to represent each physical scale of the materials, and a series of autoencoders are connected. Thus, the successive transfer of ‘‘important’’ information from one scale to another can be realized by the latent space of each autoencoder. In contrast to the previous approaches, in NestedAE each autoencoder possesses a different architecture and it is trained upon its own data set. Moreover, both the latents from the previous autoencoder and the features from the data set are reconstructed by the autoencoder.

Figure 1: Unsupervised (A) and supervised (B) NestedAE architecture. Reproduced from DOI: 10.1039/d3mh01484c with permission from the Royal Society of Chemistry

To demonstrate the applicability of this newly developed machine learning architecture, Hernandez et al. employed NestedAE to compute the density-functional-theory bandgaps of metal halide perovskites based on their atomic and ionic properties. Furthermore, their power conversion efficiencies were also predicted. It was proven that the predicted results agreed well with the previous experimental observations, and its application on the metal halide perovskites established the correlation between the fundamental atomistic-level structural properties and the macroscopic device performance.

In summary, this computational study developed an interpretable machine learning architecture, NestedAE, to quantitatively predict the material properties at many length scales and to correlate the basic chemical structure and the macroscopic performance. These insightful results pioneer a new way for hierarchically optimizing and designing new functional materials.

To find out more, please read:

NestedAE: interpretable nested autoencoders for multi-scale materials characterization
Nikhil Thota, Maitreyee Sharma Priyadarshini, and Rigoberto Hernandez
Mater. Horiz., 2024, Advance article, DOI: 10.1039/D3MH01484C

 


About the blogger


 

Wen Shi is currently an Associate Professor at the School of Chemistry, Sun Yat-sen University and he is a Materials Horizons Community Board member. He received his Ph.D. in physical chemistry from Tsinghua University in 2017. From 2017 to 2021, he worked as a scientist at Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR) in Singapore. Dr. Shi’s current research interests are in theoretical computations and simulations of functional materials.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Scientific Editor Guoping Chen elected as TERMIS-AP Chair Elect

We are delighted to share that Materials Horizons Scientific Editor Professor Guoping Chen (National Institute for Materials Science, Japan) has been elected as the TERMIS Chair Elect for the Asia-Pacific council in the last December election.

Check out the full new elected committee here

Professor Chen has started his new role as the TERMIS-AP Chair Elect on January 1st 2024 where he will serve for 3 years. He will then be promoted to the TERMIS-AP Chair from 2027 to 2029.

Please join us in congratulating Professor Guoping Chen for his new role!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Leveraging AI for Water Electrolysis: How Machine Learning is Transforming Catalyst Discovery

By Raul A. Marquez, Community Board member.

Developing low-cost, earth-abundant catalysts is essential in the quest for green hydrogen production through electrochemical water splitting. However, screening and optimizing the performance of these materials has traditionally been a time-consuming and resource-intensive process. Integrating innovative approaches such as machine learning in electrocatalysis presents a promising solution to expedite catalyst screening and discovery. Could these strategies be the game-changer in electrocatalysis design and testing? A recent study by Lim et al. suggests that combining machine learning with lab automation is ideal for identifying effective catalysts for hydrogen and oxygen evolution reactions.

The central figures of this study are transition metal layered double hydroxide (LDH) catalysts known for their unique lamellar structure and tunable chemical compositions. By examining five metal components (Ni, Co, Fe, Mo, and W) at varying ratios, the study efficiently leveraged machine learning to explore different compositions and correlate experimental electrochemical performance. This approach followed a simple yet powerful machine learning optimization workflow (Figure 1) that utilized a small initial dataset, Bayesian Optimization, and three machine learning algorithms: the Gaussian Process Regression, Gradient Boosting, and Neural Networks.

Figure 1: Summary of machine learning optimization workflow. Reproduced from DOI: 10.1039/D3MH00788J with permission from the Royal Society of Chemistry.

The neural networks proved most effective in predicting optimal catalyst compositions. The champion catalyst emerged as the molybdate-intercalated CoFe LDH, exhibiting overpotentials of 266 and 272 mV for the oxygen and hydrogen evolution reactions, respectively, while maintaining a decent stability over 50 hours. What makes this particular combination stand out? Integrating molybdate is thought to disrupt the LDH’s turbostratic structure, thereby increasing the number of active sites. Interestingly, the study also noted an unexpected outcome: Ni, typically a critical component in high-performing water-splitting electrocatalysts, was frequently excluded by the model’s recommendations. Why does this occur? It is time for the electrocatalysis detectives to investigate!

An automated synthesis system also provided an effective platform for scaling up these materials without significantly altering their physical and chemical properties. This aspect highlights the potential for industrial application and sets a precedent for scaling up electrocatalytic materials in the field.

In summary, this study underscores the potential of integrating machine learning methods into experimental workflows. This approach expedites the optimization of electrocatalysis performance, marking a substantial advancement in developing efficient and sustainable hydrogen production technologies.

To find out more, check out the full publication:

Machine learning-assisted optimization of multi-metal hydroxide electrocatalysts for overall water splitting
Carina Yi Jing Lim, Riko I Made, Zi Hui Jonathan Khoo, Chee Koon Ng, Yang Bai, Jianbiao Wang, Gaoliang Yang, Albertus D. Handoko, and Yee-Fun Lim
Mater. Horiz., 2023,10, 5022-5031 DOI: 10.1039/D3MH00788J

 


About the blogger


 

Raul A. Marquez is a Chemistry Ph.D. student working with Prof. C. Buddie Mullins at The University of Texas at Austin and a Materials Horizons Community Board member. His research focuses on understanding the chemical transformations of electrocatalytic materials and developing functional devices for energy storage and conversion technologies. Follow Raul’s latest research by following him on X (formerly Twitter): @ruloufo

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Visual observation for diagnosis of halitosis and screening of periodontitis based on a structural color hydrogel

By Jing Xie, Community Board member.

Currently, the staging and grading of periodontitis are the basis for effective treatment which relies on professional and complicated oral examinations. As such, there lacks an efficient strategy for the screening of periodontitis. Oral pathogens can produce volatile sulfur compounds (VSCs) which cause halitosis, and which can also act as biomarkers for periodontitis. High-sensitivity detection of exhaled VSCs is urgently desired for promoting the point-of-care testing (POCT) of halitosis and screening of periodontitis. However, current detection methods often require bulky and costly instruments, as well as professional training, making them impractical for widespread detection.

To promote the POCT of VSCs, Hu et al. recently reported a structural color hydrogel for naked-eye detection of oral pathogens, diagnosis of halitosis, and screening of periodontitis (Figure 1). They employed a disulfide-containing molecule N,N-bis(acryloyl)-(L)-cystine (BISS) as a VSC-responsive crosslinker within a polyacrylamide (PAAm) hydrogel network and introduced the hydrogel into a photonic crystal structure. The disulfide bonds in the hydrogel can be reduced to sulfhydryl groups by VSCs, leading to cleaved crosslinkers and thus a decreased crosslink density. As a result, the hydrogel swells, leading to a red shift of the Bragg diffraction wavelength, causing a corresponding change in the structural color of the photonic crystal. The structural color hydrogel is capable of linear detection of 0–1 ppm VSCs, which covers the typical concentration of VSCs exhaled by patients with periodontitis, and a limit of detection (LOD) of 61 ppb to H2S can be achieved. Via real-time and in-situ sensing of the VSCs produced by porphyromonas gingivalis, the proliferation process can be visually monitored, which shows consistent results with the commonly used turbidimetric method. On this basis, the structural color hydrogel is applied to detect exhaled VSCs of patients with halitosis, showing results consistent with the clinical diagnosis. By integrating hydrogels of various colors into a sensor array, the oral health conditions of patients with halitosis can be evaluated and distinguished, offering a risk assessment of periodontitis.

 

Figure 1: Schematic illustration of the structural color hydrogel for diagnosis of halitosis and screening of periodontitis. Exhaled VSCs reduce the disulfide bonds to sulfhydryl groups within the hydrogel network, leading to expansion and color shift of the hydrogel. A higher concentration of VSCs suggests severe halitosis and a higher risk of periodontitis. Reproduced from DOI: 10.1039/d3mh01563g with permission from the Royal Society of Chemistry.

In summary, compared with the state-of-the-art detection methods, the structural color hydrogel has the potential for employment in low-cost, high-sensitivity, and high-accuracy point-of-care diagnosis of halitosis and screening of periodontitis without bulky instruments and power sources. This opens a door to an auxiliary diagnosis of periodontitis and has great significance for stomatology.

To find out more, please read:

A structural color hydrogel for diagnosis of halitosis and screening of periodontitis
Chuanshun Hu, Jieyu Zhou, Jin Zhang, Yonghang Zhao, Chunyu Xie, Wei Yin, Jing Xie, Huiying Li, Xin Xu, Lei Zhao, Meng Qin and Jianshu Li
Mater. Horiz., 2024, Advance article, DOI: 10.1039/d3mh01563g

 


About the blogger


 

Jing Xie is currently an Associate Professor at Sichuan University and a member of the Materials Horizons Community Board. Dr. Xie focuses on the exploration and preparation of polymer materials and their composites, with a focus on the biological domain, particularly within the context of bone-related ailments, including osteoarthritis, bone defects, and others.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Materials Horizons 10th anniversary Community Spotlight; Meet some more of our esteemed Advisory Board Members!

Introducing the Materials Horizons Advisory Board – Part 3.

This year we are pleased to celebrate the tenth anniversary of Materials Horizons. We are so grateful to our fantastic community of authors, reviewers, Board members and readers and wanted to showcase just some of them in a series of ‘Community Spotlight’ blog articles.

In this ‘Community Spotlight’, we feature some more of the Advisory Board members who have supported Materials Horizons over the years. We have asked them what they like most about being on the journal’s Advisory Boards, about their recent publications and about their own insights into the future of materials chemistry. Check out their interview responses and related articles below.

Nan Zhang, Advisory Board Member

Hunan University, China

 

Nan Zhang is now a professor in the College of Materials Science and Engineering, Hunan University. Her main research interests include the design and optical properties of metal-based composites for photocatalytic applications and their mechanism investigations

What does it mean to you to join the Advisory Board of Materials Horizons?

“Joining the Advisory Board of Materials Horizons is an opportunity to share my expertise and knowledge to a global community of experts in the area of materials science. It could also provide me with the chance to collaborate with other like-minded individuals and make a meaningful impact on the future of materials chemistry. Additionally, being a part of the Advisory Board of Materials Horizons could offer opportunities for networking and professional development, as well as exposure to new ideas and perspectives.”

 

What in your field are you most excited about?

“Regulation of the optical properties of metal nanostructures is an important aspect of photocatalysis, as it can significantly affect the efficiency and selectivity of photocatalytic reactions, which is one of my research interests. To regulate the optical properties of metal nanostructures in photocatalytic systems, we employ various techniques such as surface engineering, material synthesis, and optoelectronic design.”

Why do you feel that researchers should choose to publish their work in Materials Horizons?

“Materials Horizons is well-suited for publishing work that explores the properties, applications, and development of new materials. Materials Horizons has a large and diverse readership, including researchers, students, and industry professionals in the field of materials chemistry. This indicates that authors who publish their work in the journal can reach a wide audience and engage with other experts in the field. Moreover, Materials Horizons has a dedicated team of experienced editors who provide thorough and constructive feedback to authors throughout the publication process, facilitating authors to benefit from expert support and guidance in improving their research and preparing it for publication.”

 

Check out some of Nan Zhang’s latest research here:

A study on the role of plasmonic Ti3C2Tx MXene in enhancing photoredox catalysis
Guanshun Xie, Chuang Han, Fei Song, Yisong Zhu,a Xuanyu Wang, Jialin Wang, Zhenjun Wu, Xiuqiang Xie and Nan Zhang.

Nanoscale, 2022,14, 18010-18021. DOI: 10.1039/D2NR05983E

 

 Electrostatically confined Bi/Ti3C2Tx on a sponge as an easily recyclable and durable catalyst for the reductive transformation of nitroarenes

Changqiang Yu, Linfen Peng, Yisong Zhu, Guanshun Xie, Zhenjun Wu, Xiuqiang Xie and Nan Zhang
J. Mater. Chem. A, 2021,9, 19847-19853. DOI: 10.1039/D1TA02736K

 

Rising from the horizon: three-dimensional functional architectures assembled with MXene nanosheets

Fei Song, Guohao Li, Yisong Zhu, Zhenjun Wu, Xiuqiang Xie and Nan Zhang
J. Mater. Chem. A
, 2020,8, 18538-18559. DOI: 10.1039/D0TA06222G

 

 

Vincent Rotello, Advisory Board Member

University of Massachusetts Amherst, USA

 

Vincent Rotello is the Charles A. Goessmann Professor of Chemistry and a University Distinguished Professor at the University of Massachusetts at Amherst. He received his B.S. in Chemistry in 1985 from Illinois Institute of Technology, and his Ph. D. in 1990 in Chemistry from Yale University. He was an NSF postdoctoral fellow at Massachusetts Institute of Technology from 1990-1993,  and joined the faculty at the University of Massachusetts in 1993. He has been the recipient of the NSF CAREER and Cottrell Scholar awards, as well as the Camille Dreyfus Teacher-Scholar, the Sloan Fellowships. He has received the Arthur C. Cope Scholar Award in 2023, in 2016 he was awarded the Transformational Research and Excellence in Education Award presented by Research Corporation, the Bioorganic Lectureship of the Royal Society of Chemistry (UK), the Australian Nanotechnology Network Traveling Fellowship, the Chinese Academy of Sciences President’s International Fellowship for Distinguished Researchers. (2016) and the Langmuir Lectureship (2010). He is a Fellow of both the American Association for the Advancement of Science (AAAS) and of the Royal Society of Chemistry (U.K.). He is also recognized in 2014, 2015, 2018-2022 by Thomson Reuters/Clarivate as “Highly Cited Researcher”

His research program focuses on using synthetic organic chemistry to engineer the interface between the synthetic and biological worlds, and spans the areas of devices, polymers, and nanotechnology/bionanotechnology, with over 650 peer-reviewed papers published to date. He is actively involved in the area of bionanotechnology, and his research includes programs in delivery, imaging, diagnostics and nanotoxicology.

What do you like most about being on the Advisory Board for Materials Horizons?

“I really enjoy watching MH grow and mature. I was around when the concept for MH was developed, and was involved in the brainstorming that identified a new and interesting name with “materials” in the title–not an insignificant challenge! I have been engaged with the journal all through the process of the first issue, the first impact factor, and watching the reputation (and IF) of the journal take its place in the forefront of materials science.”

What do you think of Materials Horizons as a place to publish impactful materials chemistry research?

MH is amongst my very favourite places to publish, and we’re always proud when one of our papers is accepted.  The journal features an excellent combination high impact and rigor, traits that are increasingly becoming difficult to find in one place.

Check out some of Vince Rotello’s latest research here:

Antimicrobial polymer-siRNA polyplexes as a dual-mode platform for the treatment of wound biofilm infections

Taewon Jeon, Jessa Marie V. Makabenta,  Jungmi Park, Ahmed Nabawy, Yagiz Anil Cicek, Sarah S. Mirza, Janelle Welton, Muhammad Aamir Hassan,  Rui Huang,  Jesse Mager and Vincent M. Rotello
Mater. Horiz.
, 2023,10, 5500-5507. DOI: 10.1039/D3MH01108A

 

Selective treatment of intracellular bacterial infections using host cell-targeted bioorthogonal nanozymes

Joseph Hardie, Jessa Marie Makabenta, Aarohi Gupta, Rui Huang, Roberto Cao-Milán,  Ritabrita Goswami, Xianzhi Zhang, Parvati Abdulpurkar, Michelle E. Farkas and Vincent M. Rotello
Mater. Horiz.
, 2022,9, 1489-1494. DOI: 10.1039/D1MH02042K

 

Erythrocyte-mediated delivery of bioorthogonal nanozymes for selective targeting of bacterial infections

Akash Gupta, Riddha Das, Jessa Marie Makabenta, Aarohi Gupta, Xianzhi Zhang, Taewon Jeon, Rui Huang, Yuanchang Liu, Sanjana Gopalakrishnan, Roberto-Cao Milána and Vincent M. Rotello

Mater. Horiz., 2021,8, 3424-3431. DOI: 10.1039/D1MH01408K

 

Aldo Zarbin, Advisory Board Member

Federal University of Paraná (UFPR), Brazil

 

Aldo José Gorgatti Zarbin is graduated (1990), Master (1993) and PhD (1997) in Chemistry. He is full professor at Department of Chemistry of Federal University of Paraná (UFPR), in Brazil. Fellow of the Royal Society of Chemistry (RSC), former President of the Brazilian Chemical Society (2016-2018), permanent member of the Brazilian Academy of Sciences and coordinator of the National Institute of Science and Technology of Nanomaterials for Life (INCT NanoVida). His main scientific interests are the synthesis, characterization, study of properties and applications of different nanomaterials, as carbon nanotubes, graphene, 2D-materials, metal nanoparticles and conducting polymer-based nanocomposites; their processing as thin films and their application in energy (batteries, supercapacitor, photovoltaics, electrochromic), sensors and catalysis.

 

What do you like most about being on the Advisory Board for Materials Horizons?

“First of all it is a great honor being member of the Advisory Board of this prestigious Journal. Personally, it represents the recognition of the quality of the science that I have been developing, which is very significant.  I really like the contact with the people in the editorial office, who are always very kind, and being able to share opinions and give reports on the high quality articles that are submitted to the journal. It is a privilege to read in advance the best that has been produced in this fascinating area of knowledge.”

 

Where do you see the materials chemistry field in the next 10 years?

Materials chemistry is the pathway to solve some of the major problems that currently afflict us. I see materials chemistry concerning about the social relevance of science as a whole, improving the welfare of the people, aiming sustainability and looking for ways to reduce the poverty and the social inequality. For example, I see a strong a development on the synthesis and processing of novel (or old ones with a new guise) materials to improve the efficiency of processes such as CO2 capture and conversion, solar photovoltaic conversion, green hydrogen generation, high-capacity batteries, aqueous-environment operating devices, etc; materials for health (implants, drug-deliver, artificial skin); materials to detoxify the environment; materials to make potable water, etc.”

Some of Aldo Zarbin’s latest research can be found here:

A tunable color palette of electrochromic materials achieved through an ingenious stacking of ordinary conducting polymers

Victor H. R. Souza, Ariane Schmidt and Aldo J. G. Zarbin
J. Mater. Chem. A
, 2023,11, 18853-18861. DOI: 10.1039/D3TA02860G

 

Prussian blue and its analogues as functional template materials: control of derived structure compositions and morphologies

Behnoosh Bornamehr, Volker Presser, Aldo J. G. Zarbin, Yusuke Yamauchi and Samantha Husmann
J. Mater. Chem. A
, 2023,11, 10473-10492. DOI: 10.1039/D2TA09501G

 

Nanoarchitected graphene/copper oxide nanoparticles/MoS2 ternary thin films as highly efficient electrodes for aqueous sodium-ion batteries

Maria K. Ramos, Gustavo Martins, Luiz H. Marcolino-Junior, Márcio F. Bergamini, Marcela M. Oliveira and Aldo J. G. Zarbin

Mater. Horiz., 2023,10, 5521-5537. DOI: 10.1039/D3MH00982C

 

Uttam Manna, Advisory Board Member

Indian Institute of Technology Guwahati, India

Uttam Manna, Fellow of Royal Society of Chemistry (FRSC), is currently an associate professor at Department of Chemistry—and affiliated with Centre for Nanotechnology and Jyoti and Bhupat Mehta School of Health Science and Technology in Indian Institute of Technology, Guwahati (IITG). He completed his Integrated PhD from IISc Bangalore in 2011. He pursued his post-doctoral research from University of Wisconsin-Madison, USA. He is recognized as an emerging investigator by Journal of Materials Chemistry A (2018), Chemical Communications (2020), Nanoscale (2021) and Chemical Society Reviews (2022). In 2023, Chemical Communications journal also recognized him as a pioneering investigator. He received the CRSI Bronze Medal for the year 2023. He is also a recipient of the Humboldt Research Fellowship for Experienced Researchers in 2021.

His research team is interested in designing functional and durable coatings embedded with bio-inspired wettability through the strategic association of robust and facile chemical approaches for energy, environment and health related different applications—including efficient oil/water separation, improving performance of water splitting, self-cleaning, chemical sensing, programmed release of small molecule, anticounterfeiting, no-loss liquid transport, strain sensing, joule heating etc.

 

What do you think of Materials Horizons as a place to publish impactful materials chemistry research?

I found Materials Horizons is one of the finest journals to publish research related to material chemistry—as this journal publishes research works on diverse topics of material chemistry. I found researchers from various scientific and engineering backgrounds publishing their exciting and fresh research ideas in this journal. Thus, this journal is widely recognized by the community of material chemistry. I would definitely mention here that the ‘New Concepts’ section of the article in the journal, really helps to quickly recognize the novelty and design principle of the published research works. This journal is a perfect home for seminal research works on materials chemistry.

 

Could you provide a summary of your most recent Materials Horizons publication?

“In the published communication (Mater. Horiz., 2023, 10, 2204), we have introduced a self-cleanable multilevel anticounterfeiting interface through covalent chemical modulation of physically unclonable and chemically reactive coating. We have spatially selectively modulated a dual chemically reactive coating—following 1,4-conjugate addition reaction and Schiff-base reaction to achieve an extremely water repellent pattern interface embedded with distinct water adhesion property and fluorescence property. The selective chemical modulation controls the fraction of contact area between water and chemically modified interface. Eventually this principle provided a facile basis to naked-eye visualization of hidden patterns on water exposure—and it disappears immediately after removal of the pattern interface from water exposure.”

Read some of Uttam Manna’s research here:

Design of a self-cleanable multilevel anticounterfeiting interface through covalent chemical modulation

Manideepa Dhar, Ufuoma I. Kara, Supriya Das, Yang Xu, Sohini Mandal, Robert L. Dupont, Eric C. Boerner, Boyuan Chen, Yuxing Yao, Xiaoguang Wang and Uttam Manna

Mater. Horiz., 2023,10, 2204-2214. DOI: 10.1039/D3MH00180F

 

Dually reactive multilayer coatings enable orthogonal manipulation of underwater superoleophobicity and oil adhesion via post-functionalization

Angana Borbora, Robert L. Dupont,  Yang Xu, Xiaoguang Wang and Uttam Manna
Mater. Horiz.
, 2022,9, 991-1001. DOI: 10.1039/D1MH01598B

 

Abrasion tolerant, non-stretchable and super-water-repellent conductive & ultrasensitive pattern for identifying slow, fast, weak and strong human motions under diverse conditions

Supriya Das, Rajan Singh, Avijit Das, Sudipta Bag, Roy P. Paily and Uttam Manna
Mater. Horiz.
, 2021,8, 2851-2858. DOI: 10.1039/D1MH01071A

 

Shannon Yee, Advisory Board Member

Georgia Institute of Technology, USA

Dr. Shannon Yee is an Associate Professor at the G.W.W. School of Mechanical Engineering at the Georgia Institute of Technology. Dr. Yee joined Georgia Tech in 2014 directly from his PhD at the University of California Berkeley.  Amid his studies, he joined the US. Dept. of Energy’s Advanced Research Projects Agency for Energy (ARPA-E) during its inaugural year as the first ARPA-E Fellow.  Dr. Yee completed his MS in Nuclear Engineering in 2008 and his BS in Mechanical Engineering in 2007, both from The Ohio State University. In 2008, he was awarded a prestigious Hertz Fellowship.  In 2015, Dr. Yee was selected for an AFOSR Young Investigator Award to develop polymer thermoelectrics.  Dr. Yee is the recipient of the 2017 American Society of Mechanical Engineering Pi-Tau-Sigma Gold Medal award for “outstanding contributions to the field of Mechanical Engineering in the first decade of one’s career.”  In 2019, Shannon was selected for an ONR Young Investigator Award to develop polymer thermal switches.  Most recently, Dr. Yee has been directing the Generation 2 Reinvent the Toilet (G2RT) program, and was recognized as one of Bill Gate’s Heroes in the Field in 2021.  Additionally, he has been instrumental at Georgia Tech is helping to establish The New York Climate Exchange and is currently serving as the co-chair for Research, Technology, and Commercialization efforts, coordinating a global community of academic, corporate, and non-profit institutions to address climate change.

What do you like most about being on the Advisory Board for Materials Horizons?

“I enjoy connecting with research colleagues and supporting the dissemination of knowledge through the Materials Horizons publication. “

What do you think of Materials Horizons as a place to publish impactful materials chemistry research?

“Materials Horizons is unique. It provides a platform to share materials chemistry developments that enable new technologies.“

Where do you see the materials chemistry field in the next 10 years?

“I see materials chemistry evolving to embrace the opportunity of providing designer materials with custom electronic, thermal, optical, and mechanical properties.”

In your opinion, how could members of the community be more involved with the journal?

“Members of the materials chemistry community can be more involved with the journal through engaging in the publication discourse.”

Some of Shannon Yee’s latest research can be found here:

Effects of film thickness on electrochemical properties of nanoscale polyethylenedioxythiophene (PEDOT) thin films grown by oxidative molecular layer deposition (oMLD)

Katrina G. Brathwaite, Quinton K. Wyatt, Amalie Atassi, Shawn A. Gregory, Eric Throm, David Stalla, Shannon K. Yee, Mark D. Losego and Matthias J. Young
Nanoscale
, 2023,15, 6187-6200. DOI: 10.1039/D3NR00708A

 

Inducing planarity in redox-active conjugated polymers with solubilizing 3,6-dialkoxy-thieno[3,2-b]thiophenes (DOTTs) for redox and solid-state conductivity applications

Sandra L. Pittelli, Shawn A. Gregory, James F. Ponder, Jr, Shannon K. Yee and John R. Reynolds
J. Mater. Chem. C
, 2020,8, 7463-7475. DOI: 10.1039/D0TC00914H

 

Electron transport in a sequentially doped naphthalene diimide polymer

Khaled Al Kurdi, Shawn A. Gregory, Samik Jhulki, Maxwell Conte, Stephen Barlow, Shannon K. Yee and Seth R. Marder
Mater. Adv.
, 2020,1, 1829-1834. DOI: 10.1039/D0MA00406E

 

David Mecerreyes, Advisory Board Member 

University of the Basque Country, Spain

Graduated from the University of the Basque Country in 1994. He obtained the Ph.D. degree in Polymer Chemistry under de supervision of Dr. Robert Jèrôme in 1998 from University of Liege (Belgium). He carried out a post-doctoral at IBM Almaden Research Center and Stanford University (USA) working in the team of Dr. James L. Hedrick and Prof. Craig Hawker. In 2001 he joined CIDETEC where he was in charge of the Nanomaterials Unit. In January 2011, he got an Ikerbasque Research Professorship at POLYMAT/University of the Basque Country (UPV/EHU).

Prof. David Mecerreyes is a creative polymer chemist and has pioneered important topics in polymer and materials science such as ring-opening polymerization (PhD times), polymer brushes and single-chain nanoparticles (post-doc times), porous PBI proton conducting membranes, poly(ionic liquid)s and polymer electrolytes for batteries (last years). He has published more than 300 scientific articles in polymer, chemistry and materials journals and delivered more than 70 invited lectures around the world.

 

What do you like most about being on the Advisory Board for Materials Horizons?

“To me it is a honor and very prestigious to be part of the Advisory Board. I love the opportunity to directly participate in the development of the journal and contribute with our best articles coming from our group as well as to have a close view of the current advances in materials science and applications.”

What do you think of Materials Horizons as a place to publish impactful materials chemistry research?

I believe Materials Horizons is “the place” to publish impactful and breakthrough articles. In particular, articles where new materials chemistry directions and concepts are demonstrated.”

Where do you see the materials chemistry field in the next 10 years?

“I see that research in polymers and materials chemistry will be more and more important in the next 10 years. The research interests will  be related to the societal needs in areas such as health, energy and environment. I see an evolution of the current research topics in circular economy, sustainability of materials. I believe that the performance and the applications of the materials will be even more important factor in the future.“

In your opinion, how could members of the community be more involved with the journal?

“It is a simple but difficult question to answer. I guess that the members of the community should see the journal present and close to them and in an interactive way through congress participation as well as the social media.”

Could you provide a summary of your most recent Materials Horizons publication?

“We recently published an article entitled Direct ink writing of PEDOT eutectogels as substrate-free dry electrodes for electromyography DOI: 10.1039/D3MH00310H. Here we showed the development of mixed ionic electronic conductive materials based on Deep eutectic solvents DES and poly(3,4 ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS). We called this new materials eutectogels which are biocompatible, cost-effective, easy to make and show high ionic and electronic conductivity values.
Due to the rheological properties of these eutectogels we showed the direct printing of electrodes for electrophysiology, called eutectic-tattoos (Eutecta2). The obtained Eutecta2 electrodes were self-standing, stable after drying, and reusable, as well as 3D printable in custom shapes.”

 

Check out some of David Mecerreyes’ latest research here:

 

Direct ink writing of PEDOT eutectogels as substrate-free dry electrodes for electromyography

Ana Aguzin, Antonio Dominguez-Alfaro, Miryam Criado-Gonzalez, Santiago Velasco-Bosom, Matías L. Picchio, Nerea Casado, Eleni Mitoudi-Vagourdi, Roque J. Minari, George G. Malliaras and David Mecerreyes
Mater. Horiz.
, 2023,10, 2516-2524. DOI: 10.1039/D3MH00310H

 

Dual redox-active porous polyimides as high performance and versatile electrode material for next-generation batteries

Nicolas Goujon, Marianne Lahnsteiner, Daniel A. Cerrón-Infantes,  Hipassia M. Moura, Daniele Mantione, Miriam M. Unterlass and David Mecerreyes
Mater. Horiz.
, 2023,10, 967-976. DOI: 10.1039/D2MH01335E

 

Self-healable dynamic poly(urea-urethane) gel electrolyte for lithium batteries

Fermin Elizalde, Julia Amici, Sabrina Trano,  Giulia Vozzolo, Robert Aguirresarobe, Daniele Versaci, Silvia Bodoardo, David Mecerreyes, Haritz Sardon and Federico Bella

J.Mater. Chem. A, 2022,10, 12588-12596. DOI: 10.1039/D2TA02239G

 

We hope you have enjoyed meeting our Advisory board members. 

 

Or to read more of our community spotlight blog, return to the home page here

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Exploiting bond exchange reaction to optimize mechanical properties of 3D printed composites

By Audrey Laventure, Community Board member.

Additive manufacturing is a polymer processing method enabling the preparation of 3D architectures with a high level of design freedom. While some of the additive manufacturing technologies, such as fused deposition modeling (FDM) are commonly used at an industrial level for prototyping, there are still numerous challenges to tackle for achieving a 3D architecture that possesses state-of-the-art thermomechanical properties, compared to those obtained via conventional methods. Considering the sustainability aspect of the selected additive manufacturing method, including the management of the failed 3D parts, is also of utmost importance in the context of sustainable laboratories.

As recently reported by Jiang et al., there are additional challenges for the additive manufacturing of continuous fiber composites which are made of a carbon fiber that is surrounded by a polymer matrix. FDM is often used to prepare such samples, where the continuous carbon fiber and the thermoplastic filament are fed separately during the processing of the materials. While this strategy works to produce continuous fiber composites, the resulting mechanical properties are mostly dictated by those of the thermoplastic polymer. To optimize the mechanical properties of such samples, an interesting alternative strategy consists of using a thermoset polymer matrix processed via direct-ink writing (DIW). While some successes have been reported exploiting DIW, the rheological properties of the thermoset in the pre-printing stage needs to meet specific requirements to enable the extrusion of the formulation, including shear-thinning and thixotropy. The solidification kinetics of the thermoset formulation occurring upon exposure of the 3D printed formulation to heat is usually slow and leads to a uniform curing, but also leads to difficulties in obtaining a 3D printed architecture with a high level of post-treatment print fidelity. To circumvent this problem, UV curable resins, once again printed via direct-ink writing, can be used as a polymer matrix for the continuous fiber composite as their solidification kinetics are often faster than those of thermosets. While this process is efficient, the presence of the continuous fiber may impede the penetration of the irradiation, usually leading to a fast yet non-uniform curing.

To address the challenges involved in the preparation of continuous fiber composites linked to the DIW of either the thermoset or the UV curable resin, Jiang et al. designed a formulation capable of undergoing a two-stage curing process, therefore successfully combining the advantages of both UV curing (fast solidification) and heat-based curing (uniform curing). They combined the 2-hydroxy-3-phenoxypropyl acrylate monomer, the phenylbis (2,4,6-glycerolate diacrylate) photoinitiator, and a triazabicyclodecene as the bond exchange reaction catalyst. As illustrated in Figure 1, the first stage (UV irradiation) allows for the free-radical polymerization to occur while the second stage (heat) is used to increase the resulting material’s crosslinking density via the transesterification reactions occurring between the hydroxyl and the ester functional groups of the material.

Figure 1. a) Chemical structures composing the two-stage curable resin undergoing b) UV curing and c) heating illustrating the bond exchange reaction involved in the optimization of the thermomechanical properties of the 3D printed architectures. Reproduced from DOI: 10.1039/d3mh01304a with permission from the Royal Society of Chemistry.

This transesterification, also referred to as bond exchange reaction, is crucial to optimize the thermomechanical properties of the 3D printed continuous fiber composites, which results in high performance applications for these architectures. Jiang et al. reported not only a ~11-fold increase in the modulus of the two-stage cured samples compared to the UV cured only samples, but also a better adhesion (referred to as welding) between the layers deposited on top of one another. This enhanced adhesion is a consequence of the covalent bond created between the layers upon the heating step which is, once again, facilitated by the bond exchange reaction.

The capability of the 3D printed architectures to undergo bond exchange reaction also allows for the repairing and reshaping of the architectures. It was shown that the 3D printed architectures could be recycled via depolymerization in ethylene glycol at high temperature (160°C), which is an important asset for a thermoset based composite, especially in the context of sustainable materials and processing. This proof-of-concept has been extended to acrylate/epoxy-based commercial resins, opening the door to fundamental studies of the mechanisms of bond exchange reactions in similar resins where further understanding of the structure-processing-property relationships could be established to lead to the rational design of custom resins for the 3D printing of continuous fiber composites.

To find out more, please read:

3D Printing of continuous fiber composites using two-stage UV curable resin
Huan Jiang, Arif M. Abdullah, Yuchen Ding, Christopher Chung, Martin L. Dunn and Kai Yu
Mater. Horiz., 2023, 10, 5508-5520, DOI: 10.1039/D3MH01304A

 


About the blogger


 

Audrey Laventure is an assistant professor in the Department of Chemistry at the Université de Montréal (UdeM), QC, Canada, and a member of the Materials Horizons Community Board. Since 2021, she holds the Canada Research Chair in Functional Polymer Materials. Her expertise lies at the intersection of physical chemistry, polymer processing and advanced materials characterization. In 2023, Audrey was selected to lead the molecular materials axis of the new Institut Courtois at UdeM. Audrey was also part of the first Youth Council of the Chief Science Advisor of Canada (2020-2023) and the Science Meets Parliament 2023 cohort.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Revolutionary Room-Temperature F-Ion Batteries: Harnessing Sulfone Electrolytes and Anion Acceptor Additives

By Edison Huixiang Ang, Community Board member.

In the realm of large-scale energy storage, the quest for low-cost, high-energy battery technologies has spurred the emergence of various alternatives. Lithium batteries utilizing Co-free conversion-type cathodes, alongside multivalent cation, and halogen anion batteries, stand out among the contenders. Conversion-type cathodes like iron fluorides in lithium batteries offer cost efficiency, higher capacity, and higher energy density compared to cathodes containing expensive transition metals. However, the use of lithium metal anodes presents safety and cost challenges, inhibiting effective real-world battery performance. Similarly, while multivalent cation batteries, such as those based on Mg2+, boast abundant reserves, their strong coulombic interactions with host materials create challenges with charge carrier migration. To address these issues and develop batteries with favourable reaction kinetics and reversibility, the burgeoning field of halogen anion batteries, particularly fluoride ion batteries (FIBs), holds promise.

 

Fig. 1 Preparation and characterization of electrolytes. (a) Preparation process of the CTD3 electrolyte. (b) Illustration of adsorption of the TG molecule to F and its adsorption energy. (c) 1 H NMR spectra of TG, CTD1 and CTD3. (d) FT-IR spectrum of CTD3. Reproduced from DOI: 10.1039/D3MH01039B with permission from the Royal Society of Chemistry.

 

FIBs, leveraging the unique properties of fluorine as the lightest and most electronegative element among halogens, offer the highest theoretical energy density. Despite this potential, realizing practical applications has been hindered by the lack of suitable electrolytes with high ionic conductivity at room temperature. The insolubility of fluoride salts in aprotic solvents has been a primary challenge. While boron-based anion acceptors (AAs) aid in dissociating fluoride salts, their strong Lewis acidity impedes fluoride transport, leading to unsatisfactory electrolyte conductivity. Addressing this limitation, a novel AA with mild Lewis acidity has been developed, facilitating fluoride salt dissociation while avoiding strong AA-F bonding. This breakthrough enables prepared electrolytes to achieve high ionic conductivity, reaching up to 2.4 mS cm-1 at room temperature, enabling successful FIB operation with a reversible capacity of 126 mA h g-1 after 40 cycles.

Moreover, understanding the regulation effect of salt concentration on the cathode interface has unveiled insights into improving FIB performance, emphasizing the critical role of rational electrode-electrolyte interface design in future FIB development. FIBs hold significant promise owing to their potential for high energy density and favourable compatibility with high-voltage electrode materials. Notably, fluorine’s abundance—two orders of magnitude higher in global production than lithium—further accentuates their appeal. Conversion-type FIBs, with a theoretical energy density of 5000 W h L-1, exhibit substantial energy density even at leaner stack levels, offering a cost as low as $20 per kW h-1 according to techno-economic analysis. Despite these merits, the experimental realization of the remarkable energy density of FIB is hindered by the lack of well-tailored electrolytes with suitable ionic transport abilities and electrochemical stability.

Liquid electrolytes for FIBs have garnered interest due to their high room-temperature ionic conductivity and better wettability compared to solid-state electrolytes. However, challenges persist, mainly the insolubility of fluoride salts in regular organic aprotic solvents due to strong electrostatic interactions. To address this, efforts have been directed toward designing softer Lewis acidity AAs that facilitate fluoride salt dissolution without excessive solvation, crucial for practical liquid electrolytes. Innovations in this work have introduced a novel sulfone electrolyte based on a new molecular-type H-donor AA (6-thioguanine, TG) with moderate Lewis acidity. Demonstrated through various analyses, this electrolyte achieves impressive ionic conductivity at room temperature, enabling the reversible cycling of FIBs. The superior reversibility is attributed to the electrolyte’s high ionic conductivity, improved desolvation capability of fluoride ions, and a well-designed interface layer.

In summary, the pioneering advancements in electrolyte design for fluoride ion batteries set the stage for increasingly viable and effective energy storage solutions, offering improved reversibility and reliable performance at ambient temperatures.

To find out more, please read:

Room-temperature reversible F-ion batteries based on sulfone electrolytes with a mild anion acceptor additive
Yifan Yu, Meng Lei and Chilin Li
Mater. Horiz., 2023, Advance Article, DOI: 10.1039/D3MH01039B

 


About the blogger


 

Edison Huixiang Ang serves as an Assistant Professor at the National Institute of Education/Nanyang Technological University, Singapore, and a member of the Materials Horizons Community Board. Dr. Edison specializes in nanotechnology, particularly exploring 2D nanomaterials for applications in energy storage, membrane technology, catalysis, and sensors. Stay updated on his work by following him on X (formerly Twitter) @edisonangsg.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Materials Horizons 10th Anniversary ‘Community Spotlight’ – Meet our Emerging Investigators Part 3

Introducing Materials Horizons’ Emerging Investigators 2022.

This year we are pleased to celebrate the tenth anniversary of Materials Horizons. We are so grateful to our fantastic community of authors, reviewers, Board members and readers and wanted to showcase just some of them in a series of ‘Community Spotlight’ blog articles.

In our fifth ‘Community Spotlight’, we feature some of our past ‘Emerging Investigators’ who have contributed their outstanding research to Materials Horizons.

Our Emerging Investigators series highlights early career scientists who have excelled in their field and work to provide quality research and communications in order to contribute to the constant evolution of chemical sciences. We asked some of our past Emerging Investigators about their experience as up-and-coming researchers and how their work has developed from early career stage to now. Check out their interview responses below.

 

Dr. Filip Podjaski, Emerging Investigator 2022

Imperial Collage London, UK

“My parents immigrated from Poland to Germany when I was a child. I grew up bilingually, which was very helpful to learn foreign languages (English, French, Spanish, Russian) and to get in touch with different cultures and mindsets. Since adolescence I was fascinated by the natural sciences and what technologies they enable. Consequently, I studied physics, at the University of Göttingen (D) and in Lyon (FR) with a focus on material properties and energy related applications.

During my PhD in the Nanochemistry department (Prof. Lotsch) at the MPI for Solid State Research (D) and at EPFL (CH), I broadened my horizons in physical chemistry and worked on photocatalysis and electrocatalysis for green hydrogen production as well as on organic materials combining light absorption and battery like energy storage intrinsically – a new and promising technology still fascinating me. I hence stayed at MPI as postdoc and became group leader to drive its development for 3 more years. Research placements at UC Santa Barbara, USA (Prof. Seshadri) and in the Institute of Material Science Seville, ES (Prof. Míguez) strongly enriched me.

Since August 2022, I am a UKRI Research Fellow in the group of Prof. James Durrant, Imperial College London (UK), where I deepen my knowledge in probing fundamental photophysical properties of light driven organic semiconductors on different time scales to better understand and tailor their function for solar fuel production.

My research interests are related to energy conversion applications and tailored material property modifications, which can be driven by light or electricity. They span over the disciplines of physics and chemistry, and partially affect biomedical applications.

 

Being concerned by increasing environmental challenges, I focus on fundamental processes of electrocatalytic and photocatalytic renewable fuel synthesis, mostly for green hydrogen production. Especially complex and organic based semiconductor systems fascinate me in this context, since they are tailorable bottom-up in principle in their structure and function. But there is much to discover about their photophysical properties and its coupling to performance. At Imperial College London, I currently investigate which chemical adaptations are helpful to make organic photocatalysts work efficiently in more natural environments, and not only in ultra-pure lab conditions.

 

Photocharging materials and resulting property modification effects are my other main research interest. Such a function typically relies on ionic interactions and goes in hand with energy and information storage. But relatively little is known about this growing field. I am keen to explore their thermodynamic and kinetic property requirements, to establish efficient structure-property relationships and new technological applications for such novel and adaptive materials. Examples for photocharging materials’ applications I recently showed with colleagues are solar batteries that enable to use renewable electricity on demand, or photo-memristive sensors that intrinsically store concentration information of analytes they can interact with in biological contexts. Light-driven micro-robotics I studied with colleagues from MPI-IS (Prof. Sitti) in biological contexts are another practical example. Remote charging or propulsion by light, as well as its use for local sensing and drug delivery has exciting potential. And if such materials and devices were tailored from organic semiconductors, more technology could become fully green and sustainable.”

 

What inspired you to pursue a career in your specific field of research?

“Primary inspiration probably came from good teachers at school (math, physics, chemistry). I chose a career in applied natural sciences for three reasons: (i) personal curiosity for profound understanding of physics and chemistry and how this translates into technology, (ii) for altruistic reasons – I wanted to contribute something good, new and lasting to our society by research and development, and (iii) because of my creativity and joy in working with different people, which in my opinion is best applied in natural sciences and with academic freedom. Research on renewable energy conversion and sustainable fuel production (photocatalysis, electrocatalysis) was my first choice due to its obvious immediate need, and because it requires interdisciplinary knowledge I wanted to develop. My enthusiastic PhD supervisors Prof. Bettina Lotsch and Prof. Anna Fontcubetra i Morral, as well as my current host and mentor Prof. James Durrant further inspired me as people who take a lot of joy and personal energy from driving fundamental research and understanding. Further inspiration comes from amazing community feedback on the relatively new topic of photocharging materials. I want to focus even more on it in future – for its relevance to energy supply technology and its broad applicability beyond (see next question). The interdisciplinary and creative research required here is also a beautiful challenge and inspiration to me.”

 

What are some of the current trends or emerging areas of research within your field that you find particularly exciting or promising?

“I think the relatively young research area of photocharging materials is particularly exciting and promising. Combing the function of solar cells and batteries in single bifunctional materials is what I feel is highly demanded in times of climate change and (potential) conflicts arising for access to natural resources. However, photo-battery concepts relying on such bifunctional materials are still scarce, have very limited efficiencies and require much more research. Photocharging effects can in principle also affects materials used for photoelectrochemistry or photocatalysis, which become more efficient due to doping or trap passivation going in hand with photo-induced charge accumulation. In parallel, structural and physical or chemical material properties can be modified by photocharging, akin to photo-switches. Their analysis can be used for sensing applications. Related research areas are the just emerging optoionics, where light induces changes in ionic concentrations and conductivity, thereby potentially improving material performance. Since photocharging can also be seen as memristive effect that captures light driven processes over time, its use for information processing is also foreseeable. Memristors as logical circuit elements are also being discussed for so called neuromorphic computing and information processing applications that could well interface with next generation IT or biomedical applications. I would be happy to help developing these areas. It represents a complex field bridging semiconductor physics, battery research, electrochemistry, photocatalysis and engineering, which are rarely combined. So little people have a holistic view and understanding. But I hope that it will change soon and that more and more people will follow up.

In terms of solar fuel production, I think that hydrogen is obviously of highest relevance. Especially when it comes to its generation by cost-efficient organic based materials and in more natural conditions, which is rarely the case, more research is needed. We need hydrogen not only as energy carrier, but also for other (photo)synthetic process such as syngas and ammonia production. In line with this, I am highly convinced of the promise in nitrogen reduction research, since ammonia is one of the products. Besides being a convenient, safe and high energy density fuel, it is also required for many industrialized processes and fertilizer synthesis, while already having a good distribution infrastructure.”

 

Read Filip’s featured Materials Horizons article here:

Photomemristive sensing via charge storage in 2D carbon nitrides.

Andreas Gouder, Alberto Jiménez-Solano, Nella M. Vargas-Barbosa, Filip Podjaski and Bettina V. Lotsch.

Mater. Horiz., 2022,9, 1866-1877. DOI: 10.1039/D2MH00069E

 

 

 

Dr Jie Jang, Emerging Investigator 2022

Central South University, China

 

Jie Jiang is an Associate Professor of School of Physics and Electronics at Central South University. He obtained the B.E. degree (2007), M.E. degree (2009), and the Ph.D. degree (2012) from Hunan University. He was a Post-doctoral Fellow in Nanyang Technological University (2012-2013 in Singapore) and Auburn University (2014-2015 in USA), respectively. His research interests focus on neuromorphic photoelectric hybrid devices based on thin-film oxide and 2D semiconductor materials. He is the Youth Editor in Nano-Micro Letters, Science China-Materials, Brain-X, International Journal of Extreme Manufacturing. He has published as first author/corresponding author about 60 papers which are often highlighted by NPG Asia Materials, Material Views-China, X-MOL, etc.

 

What inspired you to pursue a career in your specific field of research?

“When I was young, I was very interested in nature. When I grew up, I was more interested in the mathematics. However, I wanted to start my research career facing modern industry. Therefore, my current research is focused on the advanced semiconductor devices, especially for the neuromorphic intelligent devices.”

 

How would you summarise the research which lead to your recognition as an Emerging Investigator for Materials Horizons?

“I think the polarization light detector has seen growing attention. However, my research demonstrates that it can also extended to be used in the polarization-sensitive neuromorphic computing which has been never reported. It may provide a promising opportunity for the next-generation of intelligent optoelectronics.”

 

Since becoming an Emerging Investigator, how do you feel your research has developed over time?

“I am very honored to be an Emerging Investigator. It seems that my research has gone well since.”

 

What are some of the current trends or emerging areas of research within your field that you find particularly exciting or promising?

“I think the chip-integrated neuromorphic electronics and polarization-perceptual neuromorphic optoelectronics are two exciting points in my research field.”

 

What advice would you give to aspiring scientists who hope to make a significant impact in their respective fields?

The interest is most important thing. The research should also be guided toward the direction which is most different from others.”

 

What are some of the main challenges or obstacles you have encountered while conducting your research, and how have you overcome them?

“Sometimes my lab doesn’t have the equipment we need. Therefore, we must either get help from others or do the work that we can.”

 

Read Dr Jang’s featured Materials Horizons article here:

Polarization-perceptual anisotropic two-dimensional ReS2 neuro-transistor with reconfigurable neuromorphic vision.

Dingdong Xie, Kai Yin, Zhong-Jian Yang, Han Huang, Xiaohui Li, Zhiwen Shu, Huigao Duan, Jun He and Jie Jiang.

Mater. Horiz., 2022,9, 1448-1459. DOI: 10.1039/D1MH02036F

 

 

 

Dr Mohammad Mirkhalaf, Emerging Investigator 2022

Queensland University, Australia.

Mohammad Mirkhalaf is a Lecturer and ARC DECRA fellow at the Queensland University of Technology (QUT). He has obtained his PhD from McGill University, Master’s from Nanyang Technological University (NTU), and Bachelor’s from Isfahan University of Technology (IUT). After finishing PhD in 2015, he joined the National Research Council of Canada as a postdoctoral fellow working closely with his previous lab at McGill till August 2018 when he joined the University of Sydney. He joined QUT in Jan 2022. His research is on tailoring materials’ internal architecture to achieve properties and functionalities beyond those of constituents.

 

What inspired you to pursue a career in your specific field of research?

“We are all part of nature. After all, we can be perceived as live materials with intelligence. Doing research in natural and bioinspired materials has been perhaps a way for me to try to understand nature and, as such, human better.”

 

 

How would you summarise the research which lead to your recognition as an Emerging Investigator for Materials Horizons?

“Besides research, recognition is a result of being with supportive and understanding people. Let us pay our deepest respect to the people who contribute to providing supportive environments for their younger (and usually less experienced) colleagues.

In terms of research, whatever is triggered by scientific curiosity is exciting: enthusiasm to understand something better or to develop something new or more efficient brings the capacity to do so. We should just not forget that it takes time and continuous effort. I think the research that was kindly highlighted in the emerging investigator series was driven by the excitement to find a way to form ceramics into complex shapes using an efficient and relatively easy pathway.“

 

Since becoming an Emerging Investigator, how do you feel your research has developed over time?

“I think trust is a fundamental element in progress. Trust in your ability to do something but also trust in people who are there to help you. I think being featured as an emerging investigator strengthened both elements (of trust) in me. Thanks for the opportunity.”

 

What are some of the current trends or emerging areas of research within your field that you find particularly exciting or promising?

“We do certain things to pay our bills and have a protective roof. But beyond that, whatever we do should be responsibly done for the next generations. They are our continuation. With their being is our being. So in the future, I will aim to find ways to perform my research (which is on developing new materials and architectures) sustainably from nature, for nature (all beings), to nature.

We are going to lack resources and so are in search of life/resources on other planets. Much research, including on new materials, is channelled towards this goal. The question is: if in this search for life in other planets, we are harming our own earth, aren’t we defeating the purpose? We perhaps need to first keep our mother earth as intact as possible through sustainable technologies and then satisfy our other curiosities based on this principle of sustainability. We (scientists and engineers) can play a major role here. Other areas that interest me currently are using engineering mechanisms to reversibly and drastically tailor the internal architecture of materials, and the ethical aspects of live materials and artificial intelligence.”

 

What advice would you give to aspiring scientists who hope to make a significant impact in their respective fields?

“I am still in the early- to-mid stages of my career, so I am not sure if I am eligible to answer this question. But I am happy to have a discussion on this. I guess one important aspect is to go to the core of the problem. Every problem has a surface, but the beauty lies within the deeper layers. For example, a few hundred years ago, a designer could think of this problem: how thick the feet of a wooden chair should be to resist one’s weight? Or going to deeper layers, one could ask: what governs the deformation and failure of the chair’s feet? How can we prevent excessive deformation/failure? Are these governing rules the same for all materials? Trying to answer the latter set of questions has led to significant contributions to the mechanics of materials. Answering the former question would result in a chair on which people could sit. Both are valuable but satisfy different desires.

I think another key is trust as we discussed. There are elite people in academia who know much more than early career researchers about academic progress/potential. Being in touch with these people and trusting them brings stability and focus to a curious soul.”

 

What are some of the main challenges or obstacles you have encountered while conducting your research, and how have you overcome them?

“Our biggest enemy lies within us. In search of truth, one should be truthful. I must admit it might be hard for a scientific mind to carry the burden of a societal construction and politics that tend to be quite good at (sometimes) bending the truth. But we (humans) have made significant progress in discovering the essence of things properly, and I think we will get better. Intellectuals, many of whom work in academia (including my current and previous mentors), have taught us the way to scientific discoveries: reading/understanding the literature, discussing it, accepting criticisms and strong arguments even though they go against our thoughts, fact-checking, and readiness to reconstruct thoughts if needed. These are the principles I try to follow to tackle challenges. Thanks for the opportunity to discuss thoughts.”

 

Read Mohammad’s featured Materials Horizons article here:

Rationally-designed self-shaped ceramics through heterogeneous green body compositions.

Zizhen Ding, Hala Zreiqatbc and Mohammad Mirkhalaf.

Mater. Horiz., 2022,9, 2762-2772. DOI: 10.1039/D2MH00785A

 

 

 

Dr Kai Wang, Emerging Investigator 2022

Soochow University, China

 

Kai Wang received his BSc degree from the Department of Materials Science and Engineering, Beihang University in 2012, and received his PhD degree from the Technical Institute of Physics and Chemistry of Chinese Academy of Sciences in 2017. Then, he carried out postdoctoral research at the Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University.  Now, he is an associate professor at Soochow University. His research interest mainly focuses on high-performance organic optoelectronic materials and their device applications.

 

How would you summarise the research which lead to your recognition as an Emerging Investigator for Materials Horizons?

“The purpose of the research is to address fundamental questions regarding the spectral broadening and concentration quenching in solid-state multiple resonance (MR) type thermally activated delayed fluorescence (TADF) systems. Previous studies often overlooked or briefly mentioned these issues as they focused primarily on developing new materials. However, these issues are crucial in understanding the behaviour of MR-TADF systems in solid states. Our research is the first to comprehensively investigate and provide answers to these general questions. We have determined that spectral broadening is caused by the formation of excimers resulting from π-π interactions, while concentration quenching is a result of triplet exciton annihilation. These findings are essential for a deeper understanding of the behaviour of MR-TADF systems.”

 

What are some of the current trends or emerging areas of research within your field that you find particularly exciting or promising?

“In my view, the emerging category of materials known as multiple resonance (MR) emitters and their associated device applications are highly promising in the realm of organic light-emitting diodes (OLEDs). These materials have the ability to achieve remarkably efficient narrowband emission, surpassing even that of inorganic systems. This challenges our existing understanding of organic systems and allows OLEDs to remain competitive in the era of ultrahigh definition displays. Moreover, they hold significant potential for use in organic laser diodes, a shared aspiration among researchers in the field of organic optoelectronics.”

 

Read Kai Wang’s featured Materials Horizons article here:

Distinguishing the respective determining factors for spectral broadening and concentration quenching in multiple resonance type TADF emitter systems.

Feng Huang, Xiao-Chun Fan, Ying-Chun Cheng, Hao Wu, Yi-Zhong Shi, Jia Yu, Kai Wang, Chun-Sing Lee and Xiao-Hong Zhang.

Mater. Horiz., 2022,9, 2226-2232.  DOI: 10.1039/D2MH00511E

 

 

We hope you enjoy reading these interviews from our Emerging Investigators. You can find all our past Emerging investigator editorials and featured articles here:

 

Emerging Investigators 2020/2021

Emerging Investigators 2022/2023

 

Or to read more of our community spotlight blog, return to the home page here

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Materials Horizons Community Spotlight – Celebrating ten years of insight and impact with our scientific collaborators

Welcome to the Materials Horizons Community Spotlight

To celebrate our wonderful community of authors, reviewers, and board members we would like to introduce you to them, their roles in the community and their current research through our Community Spotlight blog series. This special series include some of the people who have, over the past 10 years, helped to shape and transform Materials Horizons into the cutting edge, insightful and impactful journal that it is today.

This collection of blog posts started in July 2023 with the first introduction to our esteemed Advisory Board. Each month since we have followed this with introductions to some of our very first Materials Horizons Emerging Investigators from 2020 and 2021 and a selection of our nominated Outstanding Reviewers from past years.

 

Read the first of the Community spotlight series here:

Materials Horizons Advisory Board

Meet the Advisory Board Part 1

Meet the Advisory Board Part 2

Meet the Advisory Board part 3

 

 

 

 

Read the second edition of the Community spotlight series here:

Materials Horizons Emerging Investigators

Introducing our Emerging Investigators – Part 1

 

 

Introducing our Emerging Investigators – Part 2

Introducing our Emerging Investigators – Part 3

 

 

 

Finally in our third edition of the series:

Materials Horizons Outstanding Reviewers 

 

Meet some of our Outstanding Reviewers


 

 

We would like to offer a heart felt thank you to all our scientific community who play a role in shaping Materials Horizons into the successful journal that it is today. We hope you enjoy reading more about all of these fantastic people and keep your eyes peeled for more additions to the Community Spotlight series!

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)