Multiplexing slanted spiral microchannels for ultra-fast blood plasma separation
Lab on a Stick: Multi-Analyte Cellular Assays in a Microfluidic Dipstick
Highly Efficient Adenoviral Transduction of Pancreatic Islets using a Microfluidic Device
A Lab on a Chip article highlighted in Chemistry World by Hannah Dunckley
Introducing graphene into microfluidic devices can make it easier to study proteins at an atomic level, scientists in the US have shown. Devices that are thinner and interfere less with the measurements allow larger and more intricate protein structures to be resolved using techniques that rely on probing thousands of microcrystals.
Not only does this reduce the device’s thickness, improving the signal-to-noise ratio, the graphene also acts as a barrier to prevent the sample evaporating. John Helliwell, an expert in crystallography at the University of Manchester in the UK, explains that preventing water loss from the crystal is ‘vital…because the sample hydration state needs to be preserved for its molecular integrity’.
Perry’s group are now focusing on shrinking down the dimensions and increasing the complexity of the device, as well as studying the structure of proteins involved in programmed cell death.
To read the full article visit Chemistry World.
Click the link below to read the original research paper published in Lab on a Chip for free*:
Graphene-based microfluidics for serial crystallography
Shuo Sui, Yuxi Wang, Kristopher W. Kolewe, Vukica Srajer, Robert Henning, Jessica D. Schiffman, Christos Dimitrakopoulos and Sarah L. Perry
Lab Chip, 2016, Advance Article
DOI: 10.1039/C6LC00451B
*Article is free to access until 26/07/2016 through a RSC registered account – click here to register
an article by Claire Weston, PhD student at Imperial College London
Lance Munn and co-workers at Massachusetts General Hospital have developed tissue isolation chambers that can be implanted into the brain or skin of mice beneath a transparent window, to allow host-tumour interactions to be observed over a timescale of weeks to months. A small tumour fragment from a donor mouse was placed within the shallow ‘tumour isolation chamber’ and implanted into another mouse, forcing any vasculature and connective tissue (stroma) to occur in an essentially 2D space. Fluorescent reporters were then used to visualise specific components of the tissue.
By using a shallow chamber, this new method overcomes some of the limitations of other systems used for studying tumour microenvironments and stromal remodelling processes. Other in vivo mouse models use fluorescent reporter and even transparent windows, however the penetration depth of optical microscopy is only a few hundred micrometers, preventing observations below this depth in the tissue. By using tissue chambers of around 150 µm, this issue is circumvented. Another problem can be in visualising structures that extend in the z direction, as they may overlap and be hidden; this is overcome in this work by allowing freedom of movement in the x-y plane, while restricting movement or growth in the z direction.
In the studies carried out by the authors, tumour angiogenesis was clearly observed and was found to show the same properties usually observed in tumours. It was also found that migrating blood vessel sprouts were closely associated with bundles of collagen fibres, providing the first evidence for matrix-guided sprouting in tumour angiogenesis. The tissue isolation chambers also allowed analysis of processes that are difficult to study through other methods, due to either the short distances involved, low frequency of occurrence, or rapid dynamics.
One potential application of this technology highlighted by the authors, is to provide vascularised tissues for transplantation, allowing good blood supply to the transplanted tissue immediately after implantation. In the experiments reported in this paper, stable and mature vasculature was formed that remained functional for more than 2 months after the tissue chambers were implanted. Although these initial findings are very positive, further studies would need to be carried out on a wide range of tissue types.
To download the full article for free* click the link below:
Implantable tissue isolation chambers for analyzing tumor dynamics in vivo
Gabriel Gruionu, Despina Bazou, Nir Maimon, Mara Onita-Lenco, Lucian G. Gruionu, Peigen Huang and Lance L. Munn
Lab Chip, 2016,16, 1840-1851
DOI: 10.1039/C6LC00237D
—————-
About the webwriter
Claire Weston is a PhD student in the Fuchter Group, at Imperial College London. Her work is focused on developing novel photoswitches and photoswitchable inhibitors.
—————-
*Access is free until 30/06/2016 through a registered RSC account – click here to register
an article by Burcu Gumuscu, PhD researcher at University of Twente
It takes about 14 years and 2 billion dollars to bring a successful drug from laboratory to clinic. A large portion of this time period includes in vitro culture tests, animal tests, and clinical trials. The overall success rate of a new drug molecule making it through this entire process is only around 10%. To improve this situation, there has been a tremendous amount of work in recent years on developing in vitro organ-on-chip models. Many organ-on-chip platforms (including heart, lung, kidney, liver, and intestine) have shown to mimic organ functions on the microscale, offering the possibility to eliminate animal testing, shorten long development times, and reduce costs. More importantly, such platforms can offer personalized medicine, enabling drug molecules to be tested directly on individual patient cells without adverse side-effects or harm.
Although existing organ-on-chip models have been shown to function well individually, integrating all models into a single fluidic circuitry (or “body-on-a-chip”) remains a necessary goal to recapitulate multi-physiological functions (Figure 1). Passive tube connections and chip-based vessels have thus far been utilized for this purpose. However, bulky dead volumes created in connections, and unbalanced scaling of the volumes between organ models and chip-based vessels, seem counterintuitive to the miniaturized nature of microscale platforms. These methods may also result in miscommunication between the organ models due to the dilution of the signal molecules secreted by the cells.
This fundamental problem has recently been addressed in a practical way by Khademhosseini and co-workers, who are the first to develop polydimethylsiloxane (PDMS) hollow tubes in a range of different sizes and wall thicknesses which mimic the physio-anatomical properties of blood vessels. The fabrication of the PDMS tubes was enabled by two different strategies, including both hard and soft templating (Figure 2a). After fabrication, the tube’s interior surface was coated with human umbilical vein endothelial cells (HUVEC) to introduce biological functions (Figure 2b). The biofunctionality of the elastomeric blood vessels was demonstrated by the expression of an endothelial biomarker and dose-dependent responses in the secretion of von Willebrand factor. The endothelialized PDMS tubes were also utilized for assessing a panel of drugs, including the anti-cancer drug doxorubicin, immunosuppressive drug rapamycin, and vasodilator medication minoxidil, as well as amiodarone, acetaminophen, and histamine (Figure 2c). Functional elastomeric blood vessels can be fabricated up to 20 cm in length, which is sufficient for interconnecting the organ-on-chip models. Moreover, tailorable wall thicknesses enable the opportunity to study various disease models, such as the effect of diabetes or hyperlipidemia on blood vessels. The elastomeric blood vessels are expected to replace the current technologies in assembling human organ-on-chip models.
To download the full article for free* click the link below:
Elastomeric free-form blood vessels for interconnecting organs on chip systems
Weijia Zhang, Yu Shrike Zhang, Syeda Mahwish Bakht, Julio Aleman, Kan Yue, Su-Ryon Shin, Marco Sica, João Ribas, Margaux Duchamp, Jie Ju, Ramin Banan Sadeghian, Duckjin Kim, Mehmet Remzi Dokmeci, Anthony Atala, and Ali Khademhosseini
Lab Chip, 2016, 16, 1579-1586
DOI: 10.1039/C6LC00001K, Advance Article
—————-
Burcu Gumuscu is a PhD researcher in BIOS Lab on a Chip Group at University of Twente in The Netherlands. Her research interests include development of microfluidic devices for second generation sequencing, organ-on-chip development, and desalination of water on the micron-scale.
—————-
*Access is free until 17/06/2016 through a registered RSC account.
Lab on a Chip and Corning Incorporated are proud to sponsor the eleventh Pioneers of Miniaturization Lectureship, to honour and support the up and coming, next generation of scientists who have significantly contributed to the understanding or development of miniaturised systems. This year’s Lectureship will be presented at the µTAS 2016 Conference in Dublin, Ireland, with the recipient receiving a prize of US$5,000.
Nominations should include:
Who should you nominate?
Early to mid-career scientists (maximum 15 years post completion of PhD).
Scientists who have demonstrated extraordinary contributions to the understanding or development of miniaturised systems.
Terms and Conditions
The Lectureship consists of the following elements:
The award is for early to mid-career scientists (maximum 15 years post completion of PhD).
The award is for extraordinary or outstanding contributions to the understanding or development of miniaturised systems. This will be judged mainly through their top 1-3 papers and/or an invention documented by patents/or a commercial product. Awards and honorary memberships may also be considered.
The winner will be expected to submit at least two significant publications to Lab on a Chip in the 12 months after the lectureship is awarded.
Nominations from students and self-nominations are not permissible.
The decision on the winner of the lectureship will be made by a panel of judges, and this decision will be final.
Sponsors
Corning Incorporated
Corning (www.corning.com) is one of the world’s leading innovators in materials science. For more than 160 years, Corning has applied its unparalleled expertise in specialty glass, ceramics, and optical physics to develop products that have created new industries and transformed people’s lives. Corning succeeds through sustained investment in R&D, a unique combination of material and process innovation, and close collaboration with customers to solve tough technology challenges. Corning’s businesses and markets are constantly evolving. Today, Corning’s products enable diverse industries such as consumer electronics, telecommunications, transportation, and life sciences. They include damage-resistant cover glass for smartphones and tablets; precision glass for advanced displays; optical fiber, wireless technologies, and connectivity solutions for high-speed communications networks; trusted products that accelerate drug discovery and manufacturing; and emissions-control products for cars, trucks, and off-road vehicles.
Lab on a Chip
The leading journal for miniaturization at the micro and nanoscale. Lab on a Chip supports research and development of miniaturization technologies and promotes interdisciplinary co-operation across all fields of science. The Journal also provides readers with a more fundamental understanding of miniaturization and related processes as well as the necessary tools for practical application of methods and devices.