The future of bioensors

St. Paul’s Cathedral in London has its own unique acoustics. The architecture of the dome allows a whisper to be heard from anywhere within the circular gallery, so-called the whispering gallery. The invention of whispering-gallery-mode (WGM) biosensors is indeed derived by this special gallery in St. Paul’s: just like a sound wave travelling within the dome, a light beam traveling within a glass sphere (in this case, a biosensor) circles multiple paths so that any molecule on the surface can be detected. Thanks to this powerful technique, interactions of unlabeled molecules can be analyzed with high sensitivity in real-time.

In early March of 2017, researchers from Max Planck Institute and University of Exeter published a comprehensive review paper in Lab on a Chip, explaining the advances of WGM sensors as scientific laboratory instruments, their development into lab on a chip devices, major challenges on the way towards real-world applications, and potential future applications.

WGM sensors probe the interaction between molecules and electromagnetic waves during a biomolecular reaction, and convert this information to a measurable signal. The probing is made possible thanks to the electromagnetic modes formed inside a resonator with axial symmetry. However, the electromagnetic waves slightly extend into the surrounding medium. Any changes in the surrounding medium, and therefore in the evanescent field, cause a shift of the resonance frequency—this is the basis of the sensing mechanism. WGMs are capable of sensing this shift in three ways: (1) Resonance frequency shift based sensing: measurable signal is the magnitude of the frequency shift, and the sensitivity of the sensor, which scale with the evanescent field strength at the distortion’s position, i.e. interaction of a single atomic ion with a plasmonic nanoparticle (Figure 1a). (2) Loss based sensing: it is based on the resonator’s energy loss per light wave oscillation, i.e. binding of polystyrene nanoparticles (Figure 1b). (3) Mode-splitting based sensing: a scattering molecule/particle couples clock-wise and counter clock-wise propagating WGMs, resulting in the formation of two different standing wave modes, i.e. deposition of multiple nanoparticles on a surface (Figure 1c).

Whishering gallery mode biosensors

Figure 1. Three different sensing mechanisms of whispering-gallery-mode biosensors. (a) Resonance frequency shift based sensing, (b) loss based sensing, (c) mode-splitting based sensing (from Kim et al., Lab Chip, 2017).

The review also focuses on several performance criteria of WGM sensors, such as single molecule sensitivity, time resolution, stability and specificity. Single molecule sensitivity of WGM sensors depends on the resonator’s size, the surrounding medium and excitation wavelength. Despite the fact that these parameters seem to limit the sensitivity, increasing the electric field inside a nanoscale volume significantly can circumvent this problem. Apart from that, WGM sensors can detect events happening in milliseconds to seconds whereas these detection speeds are mostly limited by the equipment, for example, the laser’s maximum scanning speed. When it comes to stability of WGM sensors, one common problem is reported to be the environmental noise sources, affecting the reliability of the measurements. A variety of methods to reduce those negative effects are further discussed in the review. One another notable functionality is that WGM sensors can be as specific as probing a surface-immobilized receptor molecule reacting with an analyte of interest.

microring resonator based on-chip sensor, pillar-supported high Q cavities

Figure 2. Lab on a chip WGMs. Left and middle images show a microring resonator based on-chip sensor with zoom-in images of different components, and right image shows a pillar-supported high Q cavities (from Kim et al., Lab Chip, 2017).

Lab on a chip applications of WGMs are discussed in two categories in the review (Figure 2): Planar resonators let the light to be coupled into multiple ring-resonators that are connected to channels containing different analytes. This type of resonators is low-cost and allows for in-parallel probing of samples. Pillar-supported high Q cavities is the second type, featuring a high Q factor owing to the air-gap between the substrate and the cavities. Pillar-supported resonators are high-cost due to several fabrication difficulties. Apart from those, droplet-based in vivo sensing via WGM sensors is also addressed as an alternative approach with the possibility of using the analyte medium itself as a resonator. Over the past decade, WGM sensors have been widely exploited to study molecular interactions with high sensitivity and seem to gain more and more attention.

 

To download the full article for free* click the link below:

Towards next-generation label-free biosensors: recent advances in whispering gallery mode sensors

Eugene Kim, Martin D. Baaske and Frank Vollmer

Lab Chip, 2017, Critical Review

DOI: 10.1039/C6LC01595F

*Free to access until 12th July 2017.

 

About the Webwriter

Burcu Gumuscu is a postdoctoral fellow in BIOS Lab on a Chip Group at University of Twente in The Netherlands. Her research interests include development of microfluidic devices for quantitative analysis of proteins of a single-cell, next generation sequencing, compartmentalized organ-on-chip studies, and desalination of water on the microscale.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

VIII International Congress on Analytical Nanoscience and Nanotechnology

The VIII International Congress on Analytical Nanoscience and Nanotechnology will be taking place in Barcelona, Spain on 3-5th July 2017. The aim of the conference is to bring together scientists working in the field of analytical nanoscience and nanotechnology to show their recent findings with interest for various applications.

The conference offers looks set to have a great program, including Plenary lectures from Advisory Board members Yoshinobu Baba (Nagoya University, Japan) and Anja Boisen (DTU, Denmark). Session topics include:

  • Lab on a Chip and Nanotechnology
  • Nanobiosensors: Sensors and Biosensors based on nanomaterials and nanostructures
  • Reliability and commercialization opportunities of Nanotechnological & Analytical Chemistry systems
  • Analysis at nanoscale

Register today to confirm you place!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Congratulations to the MSB 2017 best poster award winners

MSB 2017 was held from March 26th – 29th, in Noordwijkerhout, The Netherlands. Lab on a Chip was involved in the best poster competition, along with fellow RSC journals Analyst and Analytical Methods. The competition was Judged by an international panel of scientists, which was chaired by Dr Monika Dittman, Agilent Technologies, Germany. All posters were judged on the following criteria:

Novelty and originality of the work, creativity and potential for innovation;

Scope of work, technical quality of experimental design, and execution of experiments;

Readability of the presentation and author’s explanations.

For the Lab on a Chip sponsored prize, the award winner received a free, one year e-subscription to Lab on a Chip. Congratulations to all of the prize winners.

Three of the best poster award winners, along with conference co-chair Rawi Ramautar (far left) and chair of the poster prize award panel, Monika Dittman (far right)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

9th International Symposium on Microchemistry and Microsystems

9th International Symposium on Microchemistry and Microsystems (ISMM 2017) will be taking place in Tasmania, Australia on 26-29 June 2017. The conference is being run in conjunction with the 7th Advances in Microfluidics & Nanofluidics (AMN), the 5th Asia-Pacific Chemical and Biological Microfluidic Conference (APCBM) and the 8th Australia New Zealand Nano-Microfluidics Symposium (ANZNMF) and together promise to boast an exciting range of topics and talks from the microfluidics community.

This is the first major international meeting to be held in Australia with a strong focus on microfluidics and miniaturised chemistry, engineering and medicine, and will provide a unique opportunity and forum to discuss the latest developments in the field with researchers from all over the world.

Look our for Lab on a Chip Editorial Board member Yoon-Kyoung Cho (UNIST, South Korea) and Advisory Board member Amy E. Herr (US Berkeley, USA), who will both be giving Plenary lectures during the event and a Keynote lecture from Advisory Board member Qun Fang (Zhejiang University, China)

For full information about the conference and how to register, visit the conference website.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Digital Whispers: Novel optical sensors enable label-free sensing with digital microfluidics

Written by Darius Rackus, PhD researcher at University of Toronto

If you’ve ever visited St. Paul’s Cathedral in London or Grand Central Terminal in New York, you may be familiar with the interesting acoustic phenomenon termed a “whispering gallery”. The domed geometry of these structures allows sound to echo around the chambers such that a whisper spoken along the wall on one side can be clearly heard at the other end. This phenomenon can also apply to light, and microstructures tuned to a specific wavelength of light can be used as resonating sensors. Whispering-gallery mode (WGM) micro-goblet lasers use this phenomenon and can detect changes in the refractive index of the surrounding media as well as changes to the surface. This makes them ideal as label-free sensors that can detect changes to the surfaces of the microgoblets. When their surfaces are functionalized with capture moieties (e.g., antibodies, nucleic acids etc.) they can be used for sensitive label-free detection and would be a great tool to incorporate with microfluidics.

In their recent report, Wondimu et al. integrated arrays totaling 5,000 individually addressable sensors with a digital microfluidic (DMF) chip. DMF offers precise handling of nL-µL volume droplets in a compact format and with no moving parts. Typically, WGM sensors require coupling to fiber optics, but by doping the micro-goblets with organic dyes they can be operated as optically pumped lasers. This makes operating them less bulky and fits well with the streamlined philosophy behind DMF (i.e., no pumps, tubing, or connections). The fabrication of these large arrays is simple and relies on wet-etching and reflowing. Thus, scale-up is relatively straightforward. In their report, Wondimu et al. demonstrated the functionality of these sensors by testing liquids with different refractive indices as well as performing quantitative detection of streptavidin-biotin binding on the sensor surfaces. While these examples serve a demonstrative purpose, it will be possible to use these sensors for multiplexed affinity-based biosensing such as antibodies, nucleic acids, and aptamers. This will be a big leap for DMF as there haven’t been any examples of integrated multiplexed sensing on this scale before. One area where this could be applied to is the development of platforms to culture cells and perform multiplexed, label-free genetic analysis—a true micro total analysis system!

To download the full article for free* click the link below:


Integration of digital microfluidics with whispering-gallery mode sensors for label-free detection of biomolecules
Sentayehu F. Wondimu, Sebastian von der Ecken, Ralf Ahrens, Wolfgang Freude, Andreas E. Guber and Christian Koos
Lab Chip, 2017
DOI: 10.1039/C6LC01556E

*Free to access until 6th June 2017.


About the Webwriter

Darius Rackus is finishing his Ph.D. at the University of Toronto working in the Wheeler Lab. His research interests are in combining sensors with digital microfluidics for healthcare applications.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New YouTube Videos

C-reactive protein and Interleukin 6 microfluidic immunoassays with on-chip pre-stored reagents and centrifugo-pneumatic liquid control

 
In situ mRNA isolation from a microfluidic single-cell array using an external AFM nanoprobe

 
Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series for Lab on a Chip

Starting in 2017, Lab on a Chip will be running an Emerging Investigator Series to showcase some of the best work in the field of miniaturisation at the micro- and nano-scale, being conducted by early-career researchers. The Series will ongoing, with articles being published once they are accepted and collated online.

There are many benefits for Emerging Investigators contributing to the series, with articles being featured in an online collection and receiving extensive promotion. This includes a special mention in journal contents alerts and an interview on the journal blog. Published articles will also be made free to access for a limited period. Furthermore, the continuous format is designed to allow more flexibility for contributors to participate in the venture without the restriction of submission deadlines.

We’ve received great feedback from previous Emerging Investigators, including this quote: “Being part of the Emerging Investigators issue was an honor and helpful to my career.  Thanks again for including me” (2012 Emerging Investigator)

Read the articles included in the collection so far at – rsc.li/loc-emerging-investigator

To represent the whole of the Lab on a Chip community, the Series will have three international Series Editors with a broad range of expertise: Editorial Board members, Dino Di Carlo (UCLA, USA), Yoon-Kyoung Cho (UNIST, South Korea) and Piotr Garstecki (IPC PAC, Poland)

 

To be eligible for the new Emerging Investigator Series you will need to have completed your PhD (or equivalent degree) within the last 10 years, although appropriate consideration will be given to those who have taken a career break or followed a different study path, and have an independent career. If you are interested in contributing to the Series please contact the Editorial Office (loc-rsc@rsc.org) and provide the following information:

  • Your up-to-date CV (no longer than 2 pages), which should include a summary of education and career, a list of relevant publications, any notable awards, honours or professional activities in the field, and a website URL if relevant;
  • A title and abstract of the research article intended to be submitted to the Series, including a tentative submission date. Please note that articles submitted to the journal for the Series will undergo the usual peer review process.

Keep up to date with the latest papers added to this Series on our twitter feed (@LabonaChip) with the hashtags #EmergingInvestigators #LabonaChip

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New YouTube Videos

Device and programming abstractions for spatiotemporal control of active micro-particle swarms

 
Biophysical isolation and identification of circulating tumor cells

 
Frequency tuning allows flow direction control in microfluidic network with passive features

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Game on!

Written by Darius Rackus, PhD researcher at University of Toronto

Researchers at Standford University develop multi-level programming language for biotic games using swarms of microorganisms

Computer games are a ubiquitous pastime and a great example of how a single programming language give rise to a myriad of games. But what about biotic games? How could you program biological systems to function in an interactive way? Biotic games are interactive applications that interface biology and computer science for the promotion of science. The Riedel-Kruse Lab at Standford specialize in developing biotic games that use light to control swarms of Euglena gracilis—a phototaxic microorganism that avoids—and can direct, capture, and move whole swarms or individual organisms.

But programming swarms of microorganisms is no easy task. Swarms exhibit collective behaviour and therefore need to be controlled through local context rather than at the individual level. In their recent publication, the Riedel-Kruse Lab developed a set of hierarchical programming abstractions that allows swarms of Euglena within a biological processing unit (BPU; i.e., chip, microscope, and light stimuli) to be programmed in a single and efficient language at the stimulus, swarm, and system levels. At the lowest level, stimulus space programming (which the authors analogize to machine code) allows the programmer to have direct control over the various stimuli (e.g., turn left light on for 3 s), independent of the Euglena. Higher level programming at the swarm and system levels are more general and commands are given in terms of what the user wants the Euglena or system to do. For instance, swarm space commands direct the swarm in different operations such as move, split, and combine. System space commands incorporate conditional statements that can be used to confine a specific number of Euglena to a certain region or to clear Euglena from the field of view, for example.

 

 

While Lam et al. used this new language to program a biotic game, this new language and approach to swarm programming could be generalized for any type of swarm and stimuli. One application could be to program swarms to construct complex structures on the microscale. In future, by increasing access to BPUs through cloud computing and releasing this new programming language it will be possible for hobbyists and researchers alike to write new programs and applications. And maybe this is just the beginning of a revolution like the one ushered in by the release of the personal microcomputer.

 

To download the full article for free* click the link below:

Device and programming abstractions for spatiotemporal control of active micro-particle swarms

Amy T. Lam, Karina G. Samuel-Gama, Jonathan Griffin, Matthew Loeun, Lukas C. Gerber, Zahid Hossain, Nate J. Cira, Seung Ah Lee and Ingmar H. Riedel-Kruse

Lab Chip, 2017,17, 1442-1451

DOI: 10.1039/C7LC00131B

 

*Free to access until 24th May 2017.

 


About the Webwriter

Darius Rackus is finishing his Ph.D. at the University of Toronto working in the Wheeler Lab. His research interests are in combining sensors with digital microfluidics for healthcare applications.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Microfluidics, Physics & Chemistry of – Gordon Research Conference

Lab on a Chip is delighted to be a sponsor of: 

Microfluidics, Physics & Chemistry of  – Gordon Research Conference.

The event will take place on 4th – 9th June 2017 in Barga, Italy.

The conference brings together scientists, engineers and clinicians to discuss and advance cutting edge knowledge of microfluidics. Microfluidics are small scale systems that could be used to diagnose disease, enable unique physical and biological experiments and create new materials.

The goal of the 2017 meeting is to bridge the gap between scientists and engineers focused on fundamentals and those translating fundamental work into new applications. The conference is sure to spark animated discussion, new interactions and fruitful collaborations!

The conference will consist of topical sessions and active poster sessions. Topics include:

  • Point of Care Technologies
  • Nucleic Acid Analysis and Next Generation Sequencing
  • Fields, Forces, and Flows
  • Field-Structure Interactions
  • Wearable and Implantable Systems
  • Cell Mechanics
  • Living Systems
  • 3D Printing

The event is being chaired by Dino Di Carlo (UCLA, Lab on a Chip Editorial Board member) and Catherine M. Klapperich (Boston University) and vice chaired by Hang Lu (Georgia Institute of Technology, Lab on a Chip Associate Editor) and Cullen R. Buie (MIT).

Invited speakers include Lab on a Chip Advisory Board members Yanyi Huang (Peking University), Tony Huang (Duke University) and Albert Folch (University of Washington).

Apply by 7th May to secure your place!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)