Author Archive

Pioneers of Miniaturization Lectureship 2018

We are delighted to announce that Sunghoon Kwon is 2018 winner of the “Pioneers of Miniaturization” Lectureship!

The 13th “Pioneers of Miniaturization” Lectureship, sponsored by Dolomite and Lab on a Chip , is for early to mid-career scientists who have made extraordinary or outstanding contributions to the understanding or development of miniaturised systems.

This “Pioneers of Miniaturization” Lectureship will be presented to Sunghoon at the µTAS 2018 Conference in Kaohsiung, Taiwan, being held on 11-15 November, 2018. Sunghoon will receive a certificate, a monetary award and will give a short lecture during the conference.

Many congratulations to Professor Sunghoon Kwon on this achievement from the Lab on a Chip Team!

 

About the Winner

©Youngkwang Kang

Sunghoon Kwon earned his PhD in Bioengineering from University California at Berkeley, California, USA  in 2004. After a postdoctoral fellowship at Lawrence Berkeley National Laboratory, he was appointed to his current role as a Professor at the Department of Electrical Engineering at Seoul National University.

In recognition of his outstanding achievements, Dr. Kwon has received numerous awards, including Young Scientist Award from The Korean Academy of Science and Technology (2011), Young Scientist Award from the Korean President (2012), “IT Young Engineer Award” from IEEE (2016), Young Engineer Award from National Academy of Engineering of Korea (2018). He has authored more than 70 peer-reviewed publications and has served as Advisory Board member of Lab on a Chip since 2017. Another major contribution by Professor Kwon is the commercialization of his microfluidic technologies. A rapid antibiotic susceptibility testing method published in Lab on a Chip (2013) and Science Translational Medicine (2014) and a high-throughput DNA synthesis method (Nature Communications 2015) has been commercialized by two companies, which were spun off Professor Kwon’s laboratory.

His research interests are the interface of biomedical engineering, bioMEMS, optofluidics, nanofabrication, and nanoengineering, specifically focusing on innovative diagnostic and synthetic biology platforms for personalized medicine.

Learn about the Kwon group online

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series – Jonathan Song and Shaurya Prakash

We are delighted to introduce our latest Lab on a Chip Emerging Investigators, Jonathan Song and Shaurya Prakash!

Jonathan Song is an Assistant Professor of Mechanical and Aerospace Engineering and Faculty Member of the Comprehensive Cancer Center at the Ohio State University (OSU).  He received his B.S. in Biomedical Engineering (BME) from Northwestern University and his Ph.D. in BME from the University of Michigan while working in the laboratory of Dr. Shu Takayama.  He completed a post-doctoral fellowship in the laboratory of Dr. Lance Munn in the Edwin L. Steele Laboratory at Massachusetts General Hospital and Harvard Medical School.  Since 2014, he has been a faculty member at OSU where he leads an interdisciplinary lab that applies microtechnology, principles from tissue engineering, and quantitative engineering analysis for studying the physical dynamics of tumor and vascular biology.  As a faculty member, he has received the NSF CAREER Award, the American Heart Association (AHA) Scientist Development Grant, and the OSU Comprehensive Cancer Center Pelotonia Junior Investigator Award.  His research has been funded by the National Institutes of Health (NIH), NSF, AHA, American Cancer Society (ACS), and the OSU Institute for Materials Research.

 

Shaurya Prakash is an Associate Professor of Mechanical & Aerospace Engineering and Infectious Diseases Institute (IDI) Thematic Program Director (for Prevention, Detection, and Therapies) at The Ohio State University (OSU). He graduated with a Ph.D. in Mechanical Engineering from the University of Illinois at Urbana-Champaign in 2007 and with a B.S. also in Mechanical Engineering from the University of Arkansas, Fayetteville in 2001. He has been on the faculty at The Ohio State University since fall 2009 where he directs the Microsystems and Nanosystems Laboratory. His research group focuses on designing, fabrication, and characterization of microsystems and nanosystems for applications in healthcare and engineering biology, water purification, and alternate and renewable energy. The main goals of their research are to: provide a scientific and technological solution to the pressing problems of a rapidly evolving modern society, and educate ourselves, our students, and the community we serve.

Read their Emerging Investigators Series article “Flow dynamics control endothelial permeability in a microfluidic vessel bifurcation model” and find out more about them in the interview below:

Your recent Emerging Investigator Series paper focuses on the role flow dynamics play in endothelial permeability in a microfluidic vessel bifurcation model. How has your research evolved from your first article to this most recent article?

Jonathan: This is a very nice question.  I have been thinking of flow dynamics and generally blood vessel remodeling and angiogenesis for quite a long time now and how microfluidics is a very powerful approach for probing this biology.  This interest had first crested during my post-doc where I published a paper in 2011 with my post-doc advisor Dr. Lance Munn in PNAS (https://doi.org/10.1073/pnas.1105316108), which was also highlighted very nicely by Lab on a Chip when this article was first published (DOI: 10.1039/c1lc90131a).  Through this work, I began to fully understand and appreciate how endothelial cells that line intact blood vessels have the capacity to integrate multiple extrinsic signals, both fluid mechanical and biochemical, to determine their angiogenesis fate.

This most recent article is a bit different and I consider a significant technical advancement because of the bifurcating vessel geometry produced by microfluidic system design.  Previous microsystems that I and others had primarily used were mostly straight or parallel channels that do not reconstitute how actual blood vessels branch into two daughter vessels.  My graduate student Ehsan Akbari came up with a clever design that we described in this latest article and enabled the results that we reported.

Shaurya: Over time, my research has evolved in many ways. My first few research articles on microscale reacting gas flows (microcombustion) in millimetre scale channels really started to establish many of the fundamental insights to reacting flows in a new type of configuration. Since then, observing the trends in my work, I see that my research has dealt with developing devices for understanding microfluidic and nanofluidic flows in a variety of configurations spanning a large range of applications from healthcare to energy and water. The goal has always been to develop science to enable new technology for solving problems important to modern society. This particular article on endothelial permeability follows (at least in my mind!) the natural extension of developing novel microfluidic systems and probing fundamental transport characteristics, which in this case happens to be for an important element in biology.

What aspect of your work are you most excited about at the moment?

Jonathan: Because of my training in microfluidics, I think I will always be excited about developing new systems and applying them to study a specific physiology.  However, at present I am particularly excited in studying the subcellular biophysics that orchestrate changes in endothelial remodeling and angiogenesis.  My lab is part of team along with my co-author on this article (Dr. Shaurya Prakash) and our Ohio State University (OSU) colleague Dr. Carlos Castro that was recently awarded an NIH R01 grant to specifically study this biology.  One of the experimental test beds for these studies is the microfluidic system that was first described in this article.

Shaurya: Our microfluidic platform provides us tremendous flexibility in evaluating bio-chemical-electrical-mechanical aspects of the endothelium. In particular, the ability to systematically evaluate effects of a variety of mechanical, electrical, and chemical stimuli to elicit biological responses from endothelial cells present an exciting avenue for future research that can probably help us to think about how we can truly begin to reach in the domain of ‘engineering biology’.

In your opinion, what is the biggest insight into the mechanisms that control vessel function presented by your research?

Jonathan: I believe it is that the impinging stagnation point flow at the base of our bifurcating microfluidic model (which we term in the article as bifurcated fluid flow or BFF) imparts a vessel stabilizing effect that is nitric oxide (NO) dependent.  This outcome has prompted multiple questions that we wish to pursue in the future that relate to vessel function and vessel maturation.

Shaurya: In this paper, the evaluation of time-dependent changes to endothelial permeability under a variety of systematically controlled local flow conditions (stagnation pressure at bifurcation point, local shear stress, and transvascular flow) showed that the mechanical forces acting on the endothelial cells biochemically-mediate endothelial remodeling processes. Here we reported the first observation of the time-dependent effect of stagnation pressure at the bifurcation point on the permeability thereby introducing stagnation flows at the base of vessel bifurcations as an important regulator of vessel permeability and suggest a mechanism by which local flow dynamics control vascular function in vivo through this in vitro study.

What do you find most challenging about your research?

Jonathan: I do like pretty much all aspects of my lab’s research and appreciate the challenges that are associated with working in interdisciplinary research.  What I do find particularly challenging at times is staying on top of the most cutting-edge literature in both the microtechnology and the biology related to my lab’s work.

Shaurya: In vivo biological responses are incredibly complex. The ability to carefully design devices to elucidate systematically the underlying biophysics through in vitro systems requires bringing together various skill sets and intellectual expertise from microfluidic device design, fabrication, and characterization to appropriate biological models followed by subsequent analysis and modeling. Integrating all these skills and expertise to one platform via an interdisciplinary team is both exciting and challenging.

In which upcoming conferences or events may our readers meet you?

Jonathan: My travel patterns have varied from year to year but I typically attend Experimental Biology (or FASEB) because of my involvement with the Microcirculatory Society.  I also typically attend the Summer Biomechanics, Bioengineering, and Biotransport Conference (SB3) and the Biomedical Engineering Society (BMES) Annual Meeting.  I have also enjoyed attending the ASME NanoEngineering for Medicine and Biology (NEMB) conference.  I have not been as active in attending some of the disease specific conferences but intend to start doing so.

Shaurya: Our results are shared at many premier meetings like MicroTAS, Hilton Head Workshop, and other related meetings.

How do you spend your spare time?

Jonathan: My wife is trained as a social worker and is a big proponent of heath and wellness.  Thus, we try to stay active.  For example, we like to take our son biking with us.  He is only 2 years-old now so he is secured to seat on the front of my wife’s bike.  Admittedly, we typically just bike to our favorite local coffee shop.  I have also gotten into a little more extensive cycling, driven largely by my involvement with the OSU Comprehensive Cancer Center Pelotonia, which is an annual philanthropic bike race that has raised over $150 million for cancer research since it was started in 2008.  I have rode in every Pelotonia race since I started at OSU in 2014.

Shaurya:  Family time is essential to my success. Sharing my spare time with an incredibly supportive wife, amazing kids (and a wonderful fur-baby, dog) is time well spent. Any residual time after that is taken up by reading and working in my yard tending to my flower beds and lawn.

 Which profession would you choose if you were not a scientist?

Jonathan: Broadly speaking, probably something in in the business world.  However, if that were the case, I do not think I would be enjoying myself as much as I am now.  Working with my students is probably my favorite part of being an academic scientist.

Shaurya: This is a difficult question as being an engineer and scientist has been not just a profession but a way of life in thinking about solving problems that impact modern society. As a professor, I also enjoy teaching and working with young(er) minds to develop thought processes for solving problems. In my own younger days I was a fair athlete and so being a coach that would allow me to contribute to future generations as a mentor, teacher, and role-model to facilitate positive impact on our world would be an alternate life for me.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Jonathan: Invest in ideas that excite you the most.  Also, when pursuing collaborative projects, try to go for the ones that are both highly significant and mutually beneficial for all parties involved.

Shaurya: Choose and work on problems you truly care about – it shows in how the science is done and technology is developed and all the essential pieces behind impactful work like idea and concept development, writing and reading to compare against state-of-art, and eventually advancing the state-of-art. Therefore, pursuing problems that one is truly passionate about is important.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Pioneers of Miniaturization Lectureship 2018

Lab on a Chip and Dolomite are proud to sponsor the thirteenth Pioneers of Miniaturization Lectureship, to honour and support the up and coming, next generation of scientists who have significantly contributed to the understanding or development of miniaturised systems. This year’s Lectureship will be presented at the µTAS 2018 Conference in Kaohsiung, Taiwan with the recipient receiving a prize of US$2,000.

Who should you nominate?

Early to mid-career scientists (maximum 15 years post completion of PhD).

Scientists who have demonstrated outstanding contributions to the understanding or development of miniaturised systems.

How do you nominate?

Submit your nominations to Lab on a Chip Editor Sam Keltie at LOC-RSC@rsc.org

Nominations should include:

  • Full contact and affiliation details of the person making the nomination.
  • A letter of nomination with the candidate’s accomplishments and why the lectureship is deserved. (The nominee must be aware that he/she has been nominated for this lectureship.)
  • A list of the candidate’s relevant publications or recent work (all work should be original).
  • Candidate’s scientific CV stating PhD completion date; address; and full contact details.

Nomination Deadline: 30 June 2018

Who has won the Pioneers of Miniaturization Lectureship in the past?

  • 2017: Professor Aaron Wheeler, University of Toronto, Canada
  • 2016: Professor Daniel Irimia, Massachusetts General Hospital, USA
  • 2015: Professor Dino Di Carlo, University of California, Los Angeles, USA
  • 2014: Professor Sangeeta N. Bhatia, Massachusetts Institute of Technology, USA
  • 2013: Professor Shuichi Takayama, University of Michigan, USA
  • 2012: Professor Andrew deMello, ETH Zürich, Switzerland
  • 2011: Professor Ali Khademhosseini, Massachusetts Institute of Technology, USA
  • 2010: Professor Stephen Quake, Stanford University, USA
  • 2009: Professor Abe Lee, University of California, Irvine, USA
  • 2008: Dr Patrick Doyle, Massachusetts Institute of Technology, USA
  • 2007: Dr Manabu Tokeshi, Nagoya University, Japan
  • 2006: Dr David Beebe, University of Wisconsin, USA

Terms and Conditions

The Lectureship consists of the following elements:

  • A prize of US$2,000. No other financial contribution will be offered
  • A certificate recognising the winner of the lectureship
  • The awardee is required to give a short lecture at the 2018 µTAS Conference

The award is for early to mid-career scientists (maximum 15 years post completion of PhD). Appropriate consideration will be given to those who have taken a career break or followed a different study path.

The award is for outstanding contributions to the understanding or development of miniaturised systems. This will be judged mainly through their top 1-3 papers and/or an invention documented by patents/or a commercial product. Awards and honorary memberships may also be considered.

The winner will be expected to submit at least two significant publications to Lab on a Chip in the 12 months after the lectureship is awarded.

Nominations from students and self-nominations are not permissible.

The decision on the winner of the lectureship will be made by a panel of judges coordinated by the Editor, and this decision will be final.


Sponsors

Dolomite

Dolomite, part of the Blacktrace group, is the world leader in the design and manufacture of microfluidic products. Our systems are flexible and modular, allowing users to execute a wide range of applications in biology, chemistry, drug discovery, food, cosmetics, and academia. With expertise on hand, we can talk to you about your needs to ensure you find the right system for you and your research.

Lab on a Chip

Lab on a Chip provides a unique forum for the publication of significant and original work related to miniaturisation, at the micro- and nano-scale, of interest to a multidisciplinary readership. The journal seeks to publish work at the interface between physical technological advancements and high impact applications that are of direct interest to a broad audience.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

EMBL Microfluidics 2018 Conference

EMBL Microfuidics 2018 Conference will be held at EMBL Heidelberg, Germany between 15th-17th July 2018

“The EMBL Microfluidics Conference 2018 aims to bring together top researchers in the field and to spark scientific exchange, also across different disciplines. The latest Lab-on-a-Chip technologies and applications will be presented, which should be of major interest for experts as well as scientists looking for a first glance at this exciting new technology.”

Over the past years microfluidic approaches have been used for a variety of applications, including nucleotide sequencing, functional genomics, single-cell/single-molecule studies and diagnostics. Many of these applications, including next-generation sequencing devices, have been revolutionised by miniaturisation, paving the way for global gene analysis and hence transforming biology. Small objects such as cells, or even discrete parts thereof, can be exposed to unique conditions, facilitating entirely novel approaches in modern biology and chemistry.

Confirmed speakers include Lab on a Chip Associate Editors Petra Dittrich (ETH Zurich) and Hang Lu (Georgia Institute of Technology), Lab on a Chip Editorial Board member Piotr Garstecki (Polish Academy of Sciences) and Lab on a Chip Advisory Board members Amy E. Herr (UC Berkeley) and Dave Weitz (Harvard University).

LOCATION & DATES 

EMBL Heidelberg, Germany 15 – 17 Jul 2018

DEADLINES:

 Registration – 4 Jun 2018 

Abstract – 23 Apr 2018

Lab on a Chip  Editor-in-Chief, Abe Lee will be chairing a session during the conference and Deputy Editor, Maria Southall will also be attending the conference.

For further information on the conference, please visit the main website. To register, please click here.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

MMB 2018

The 9th International Conference on Microtechnologies in Medicine and Biology (MMB 2018) is being held in California, USA on March 26-28, 2018

The primary purpose of the conference is to foster interactions between biologists and medical researchers; chemists, physicists and engineers to enhance and strengthen the potential of microtechnologies in revolutionizing the fields of medicine and biological sciences through the development of new research tools and technologies.

The conference is set to have a great talks, with Keynote lectures from Seok “Sid” Chung, Korea University; Jianping Fu, University of Michigan; Amy Herr, University of California, Berkeley; Henry Hess, Columbia University; Marianna Kruithof-de Julio, University of Bern; and Milica Radisic, University of Toronto.

Key Dates:

Late News deadline: 6th February 2018

Early Bird Registration: 13th February 2018

Regular Registration: 21st March 2018

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Art in Science Competition Winner Announced at MicroTAS 2017

Lab on a Chip and the National Institute of Standards Technology (NIST) were pleased to present the Art in Science award at the µTAS 2017 Conference on 26 October 2017. The award highlights the aesthetic value in scientific illustrations while still conveying scientific merit. Many fantastic submissions were received this year with the winner selected by Maria SouthallLab on a Chip Deputy EditorDarwin Reyes, NIST and Petra DittrichLab on a Chip Associate Editor member.

And the winner is…

Give Bubbles a Chance
Maria Cristina Letizia, EPFL, SWITZERLAND

 

Runners up are…

Reflections
Dorothea Helmer, Karlsruhe Institute of Technology, GERMANY

Mondrian’s Micropillars
Eloise Pariset, CEA – LETI, FRANCE

A big thank you to all the contributors this year!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series – Wilbur Lam

We are delighted to introduce our latest Lab on a Chip Emerging Investigator, Wilbur Lam!

Wilbur A. Lam, MD, PhD is an Associate Professor of Biomedical Engineering and Pediatrics at the Georgia Institute of Technology and Emory University and has a unique background as a physician-scientist-engineer trained in pediatric hematology/oncology and bioengineering. Dr. Lam’s interdisciplinary laboratory, located at both Emory and Georgia Tech, includes engineers, biologists, biophysicists, chemists and physicians. Our laboratory serves as a unique “one-stop shop” in which we develop in vitro microsystems to study hematologic processes in both health and disease and then immediately bring those technologies to the patient bedside. More specifically, the Lam laboratory’s research interests involve the development and application of microsystems to enable research in pathologic biophysical blood cell interactions that occur in diseases such as sickle cell disease and thrombosis, as well as further translating those systems into novel therapeutics and diagnostic devices.

Read Wilbur’s Emerging Investigator series paper “Probing blood cell mechanics of hematologic processes at the single micron level” and find out more about him in the interview below:

 

Your recent Emerging Investigator Series paper focuses on probing blood cell mechanics of hematologic processes. How has your research evolved from your first article to this most recent article?

As a bioengineer and a physician specializing in paediatric haematology, my initial goals for our lab were really twofold: 1) to leverage microscale technologies to apply cell mechanics principles towards investigating clinically relevant biologic processes and 2) to convince the medical and clinical haematology fields that physical phenomena such as shear stress and the mechanical properties of the microenvironment can directly mediate the biologic processes of blood cells and pathophysiology of blood diseases such as sickle cell disease and thrombosis. Over the last few years, I think our lab and other groups have accomplished that and we’re now concentrating on not only the basic science questions of blood cell mechanics but how to apply the microtechnologies we develop as potential diagnostics and even therapeutic systems for patients with blood diseases.

What aspect of your work are you most excited about at the moment?

Along those same lines, we’ve been at this game long enough to see some of our microtechnologies translate to my patients with blood diseases, which we find pretty exciting. For example, we just received FDA clearance for a point-of-care anaemia diagnostic our lab developed. We also have several other blood cell mechanics-based microtechnologies that are in our lab’s translational pipeline we’re pretty excited about. For instance, we’ve developed a microfluidic system that can assess platelet contraction forces at the single cell level and we’re now trying to determine whether that system can be used to diagnose patients with bleeding disorders, a clinical interest of mine. At the same time, we’re also trying to leverage that mechanical phenomenon of platelet contraction as a “Trojan Horse” strategy of targeted drug delivery for haemophilia, which we find to be pretty sci-fi and exciting. Moreover, using fairly simple microfluidic devices, we determined that intravenous hydration, a standard first-line therapy for sickle cell disease, may have beneficial as well as deleterious effects on red cell mechanics, which could potentially alter how we treat this disease. We’ve also developed technologies that can enable the translation of other technologies including a microfluidic device that can improve the transduction efficiency of lentiviruses for gene therapy and CAR T-cell therapy, which are both making significant clinical impacts right now. That said, we still remain very interested in the basic science of blood cell mechanics, which is evidenced by this current paper of ours, and we have active projects including but not limited to investigating leukocyte mechanics and are developing new microfluidic strategies to study and model bleeding.

In your opinion, what is the biggest potential impact the results of this research will have on blood disorder diagnostics?

I think impact of our research regarding blood disorder diagnostics can be measured in several ways. First, we obviously want to positively affect and help as many patients and people as possible, which is why we’re clearly excited about the recent FDA 510K clearance of our point-of-care anaemia diagnostic. For that project, we’re currently planning our manufacturing and distribution strategy with different partners to commercialize and disseminate this technology in the US and abroad to impact as many people globally as we can. In addition, we can also measure impact on a more personal level. One of the reasons why our lab has been fortunate enough to be able to recruit the best graduate students and postdoctoral fellows is because of our unique setup in which our lab is located both on the engineering side at Georgia Tech as well as the clinical side at Emory University and Children’s Healthcare of Atlanta, where I am a practicing physician. I’ve truly been blessed to work with the best and most talented students and postdocs in the field of bioengineering and I think they enjoy the fact that they can design a device and literally see it be used on a real live patient within a relatively short time frame. This is great for my patients as well, who are able to witness firsthand how medical technology develops and the potential of how it can improve their own lives in the near future. So, in essence, our lab has developed a “basement-to-bench-to-bedside” approach in which we design and develop microtechnologies to not only study disease but also directly translate these to the patients I care for and even conduct clinical assessments and trials for those devices – all under one roof. By the way, if your readers can help me come up with a better word than “basement” while still maintaining the alliteration as well as the overall message of the phrase, my lab and I will be extremely grateful.

What do you find most challenging about your research?

Like many other bioengineering laboratories among your readership, successful design and development of a novel micro/nanoscale technology is only half the battle. Then you have to do the actual experiment to demonstrate its utility and hope it delivers some type of value. This can be frustrating at times, as our projects can take twice as long as average, but the hope is that our impact will be doubled as well.

In which upcoming conferences or events may our readers meet you?

I attend the annual American Society of Hematology and International Society on Thrombosis and Haemostasis meetings as I serve on the scientific committees for both of them. I also frequently attend the annual Biomedical Engineering Society and MicroTAS meetings as well.

How do you spend your spare time?

I answer interview questions for scientific blogs! Seriously, I’m a huge fan of pop culture and pop music. I even have a lifetime subscription to Rolling Stone, which I’ve been starting to regret in recent years as I’ve grown older as the covers of that magazine have progressively gotten more risqué (or maybe that’s just my perception as whatever semblance of hipness and coolness I ever had is exponentially decreasing with time). I also still pick up my guitar every now and then – especially when I’m procrastinating writing a grant or submitting grades.

Which profession would you choose if you were not a scientist?

I find that when most people are asked this question, they give an idealized answer, so I’ll do the same. I’d like to say that I’d be a successful songwriter/musician as I’ve played guitar in bands from my teenage years until my first faculty position (during my clinical training, I played in an all-paediatrician band named “Booster Shot”). However, to be frank, I really wasn’t that good and seriously doubt I could have made it as a professional musician. So, I think the realistic answer is that my most likely alternative profession would be that of a disgruntled sales associate at a Guitar Center somewhere or working as a roadie for artists a fraction of my age and whom I most likely would have despised. So, it’s good that this science and medicine thing worked out…

Can you share one piece of career-related advice or wisdom with other early career scientists?

Hone your writing skills, start early and keep practicing. I am constantly amazed at how much of my time is devoted to writing and how important that skill is to be a successful scientist. Whether it’s writing or editing papers, lectures, or grants, I find I actually spend most of my time writing. In retrospect, this makes sense as communication really is the currency of science, but there’s no way my younger self would believe me if I were to travel back in time to let him what was ahead of him. I’ve had many young people tell me they want to go into science specifically because they dislike writing, which is obviously a misperception I’m quick to point out. In fact, one joke (and not a very good one, admittedly) I often share with my students is that as a scientist, I actually write really bland non-fiction for a living and for a very small audience, and when I’m grantwriting, I’m only writing to an audience of three people.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Lab on a Chip awards prestigious prizes at MicroTAS 2017

The µTAS 2017 Conference was held during 22 – 26th October in Savannah, Georgia, USA.  Maria Southall,  Deputy Editor of Lab on a Chip, attended this conference and announced the prestigious Lab on a Chip awards which include the Pioneers of Miniaturization Lectureship (in partnership with Dolomite Microfluidics), the Widmer Young Researcher Poster Prize, the Art in Science competition (in partnership with NIST) and the µTAS video competition (in partnership with Dolomite Microfluidics). The competition was tough, but we are pleased to announce this year’s Prize Winners below.

“Pioneers of Miniaturization” Lectureship

Professor Aaron Wheeler (University of Toronto) was announced as the winner of the 12th “Pioneers of Miniaturization” Lectureship, sponsored by Dolomite and Lab on a Chip. The “Pioneers of Miniaturization” Lectureship rewards early to mid-career scientists who have made extraordinary or outstanding contributions to the understanding or development of miniaturised systems. Professor Aaron Wheeler received a certificate and a monetary award, and delivered a short lecture titled “A Pioneer’s Trail: from Savannah to Toronto to Kakuma and Beyond” at the conference.

Left to Right – Aaron Wheeler (Winner), Maria Southall (Lab on a Chip), Mark Gilligan (Dolomite). Photo taken by Darius Rackus.

Art in Science Competition

Darwin Reyes from the National Institute of Standards Technology (NIST) and Lab on a Chip presented the Art in Science award to Maria Cristina Letizia (EPFL, Switzerland). The award aims to highlight the aesthetic value in scientific illustrations while still conveying scientific merit. Check our her winning photograph “Give Bubbles a Chance” below.

Left to right: Darwin Reyes (NIST), Maria Cristina Letizia (Winner), Maria Southall (Lab on a Chip), Winning photo “Give Bubbles a Chance”

µTAS Video Competition

Dolomite and Lab on a Chip announced Aniruddha Kaushik (Johns Hopkins University) as the winner of the 2017 µTAS video competition. µTAS participants were invited to submit short videos with a scientific or educational focus. The winning video “Droplet Microfluidics Rap” can be viewed on our YouTube channel, along with the runner up video “Bubbles in Complex Microgeometries at Large Capillary Numbers” by Martin Sauzade (Stony Brook University). Mark Gilligan of Dolomite presented the winner with a voucher for Dolomite equipment.

Left to right: Mark Gilligan (Dolomite), Aniruddha Kaushik (Winner), Maria Southall (Lab on a Chip)

Widmer Young Researcher Poster Prize

The Widmer Young Researcher Poster Prize was awarded to Jin Ko, PhD student at the University of Pennsylvania for their poster on the prognosis of traumatic brain injury using machine learning based miRNA signatures in nanomagnetically isolated brain-derived exosomes.

Left to right: Séverine Le Gac and Ashleigh Theberge (Poster Award Chairs), Maria Southall (Lab on a Chip), David Issadore (PhD supervisor of award winner)

Congratulations to all the winners at the conference! We look forward to seeing you at µTAS 2018 in Kaohsiung, Taiwan!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator series – Pouya Rezai

We are delighted to introduce our latest Lab on a Chip Emerging Investigator, Pouya Rezai!

Dr. Pouya Rezai is an emerging investigator in the fields of microfluidics and Lab-on-Chips (LoC). He received his PhD in Mechanical Engineering from McMaster University in 2012. Dr. Rezai was an NSERC Visiting Fellow at Public Health Agency of Canada before joining York University in July 2013 as an Assistant Professor. He is the Graduate Program Director of the Department of Mechanical Engineering at York University and the Editor of the Canadian Society for Mechanical Engineering (CSME) bulletin. The overarching goal of his research program is to expand fundamental understanding of the interactions between fluids and nano- to micro-scale biological substances in their micro-environments and to employ this knowledge to devise efficient microsystems for facilitating research and development in human health-related applications

Read Pouya’s Emerging Investigator series paper “A microfluidic device for partial immobilization, chemical exposure and behavioural screening of zebrafish larvae” and find out more about him in the interview below:

 

Your recent Emerging Investigator Series paper focuses on a microfluidic device to partially immobilise Zebrafish Larvae for behavioural screening. How has your research evolved from your first article to this most recent article?

I started my work on organisms-on-a-chip with the C. elegans worm model. Our work was initially focused on C. elegans response to electric field in microchannels, a phenomenon called electrotaxis. We then became interested in using electrotaxis as a tool to screen movement of worms under exposure to chemicals. Recently, we have become interested in not only electrotaxis, but also chemotaxis of C. elegans and other model organisms such as Drosophila melanogaster and Danio rerio in lab-on-chips. We have developed multiple microfluidic devices for neurobehavioral screening of these organisms. Our goal is to continue working on the same models at the behavioural level but also focus on their cellular responses to stimuli. Our long term objective is to use our organism-on-a-chip devices for drug screening and toxicology studies in collaboration with academia and industry.

What aspect of your work are you most excited about at the moment?

Two major aspects of my work as a professor excites me the most. First and foremost is being able to teach and train young students in the fields of Mechanical and Biomedical Engineering that I am passionate about; and second is having the opportunity to apply my knowledge as an engineer directly to human health related issues. Due to the interdisciplinary nature of our research, I find the collaborative aspects of our work very rewarding for me and my trainees.

In your opinion, what is the biggest benefit of immobilising Zebrafish Larvae for analysis over the conventional droplet-based technique?

The most significant benefit is achieving higher sensitivity in quantifying subtle movement behavioural phenotypes of zebrafish in an easier and faster way. In droplets, you either need an expert to monitor movement manually or complex setups for tracking larvae’s movement in the droplet. With our technique, minimally trained personnel can quickly gain the ability to assay zebrafish movement under exposure to various chemicals.

What do you find most challenging about your research?

We develop devices for live organisms with the capability of making voluntary decisions while in the chip. One does not encounter this challenge with cultured cells or molecules. Decision-making generates opportunities to study sensory-motor responses at the whole-organism level, but also produces a wide variety of challenges in designing microfluidic devices and quantification of the desired biological processes. Another challenge is the general trend in the field to move towards biological models that better mimic human diseases and disorders. This has generated significant momentum towards the use of human-derived cells in biomimetic microfluidic devices. However, I still think there are many unanswered questions that can be addressed by small scale organisms.

In which upcoming conferences or events may our readers meet you?

The International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS) is my favorite conference to go to every year. Some other events that we attend are the MEMS and Transducers conferences.

How do you spend your spare time?

Time is the most precious thing in the world. The nature of an academic job requires a significant dedication of time to professional development, especially at the initial stages of your career. Is this a correct path that we have taken? Let’s not get there for now!
Like many of my colleagues who are my role models and mentors, I rarely have any spare time to be spent on my hobbies. But the most important activity that I enjoy doing, and I wish I could do much more, is to spend quality time with my lovely family. After this, I enjoy nature and listening to good music.

Which profession would you choose if you were not a scientist?

I would pursue the entrepreneurship path and start my own business to help resolve a pressing health related issue.

Can you share one piece of career-related advice or wisdom with other early career scientists?

One of the most influential factors during my professional career has been the opportunity to have excellent mentors and role models who have guided me throughout my postgraduate studies and academic career. The leaders in the field and their path to success have been very inspiring to me in the recent past. I recommend early career scientists to reach out to their communities and seek professional advise on their research and teaching activities.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigators series – Milad Abolhasani

We are delighted to introduce our latest Lab on a Chip Emerging Investigator – Milad Abolhasani!

Milad Abolhasani is currently an Assistant Professor in the Department of Chemical and Biomolecular Engineering at North Carolina State University. He received his B.Sc. (2008) and M.A.Sc. (2010) degrees in Mechanical Engineering from Sharif University of Technology and the University of British Columbia, respectively. He then obtained his Ph.D. degree (2014) from the Department of Mechanical and Industrial Engineering in collaboration with the Departments of Chemistry and Chemical Engineering at the University of Toronto. Prior to joining NC State University, he was a postdoctoral fellow in the Department of Chemical Engineering at MIT (Jensen group, 2014-2016), where he developed a modular flow chemistry strategy for in-situ mass transfer and kinetic studies of single/multi-phase chemical processes including bi-phasic cross-coupling reactions and colloidal synthesis and ligand exchange of semiconductor nanocrystals. Dr. Abolhasani‘s research interests include the development of microfluidic technologies tailored for solution-phase processing of energy harvesting nanomaterials and for fundamental studies of transport mechanisms involved in CO2 capture, recovery, and utilization in green chemistry (enabled by switchable solvents). Over the course of his doctoral and postdoctoral research, Dr. Abolhasani received numerous fellowships and awards including NSERC Postdoctoral Fellowship, CSME 2014 Best Graduate Student Paper Award, Bert Wasmund Graduate Fellowship in Sustainable Energy Research, and Russell A. Reynolds Graduate Fellowship in Thermodynamics.

Read his Emerging Investigators paper “Automated microfluidic platform for systematic studies of colloidal perovskite nanocrystals: towards continuous nano-manufacturing” and find out more about his research in the interview below:

Your recent Emerging Investigator Series paper focuses on studying colloidal perovskite nanocrystals. How has your research evolved from your first article to this most recent article?

Well, my first research article as a graduate student (published in Lab on a Chip) was focused on the development of an inexpensive approach for rapid determination of thermodynamic characteristics of gas-liquid reactions using an image processing technique. Since then, I’ve expanded my expertise in multi-phase microfluidic systems with a focus on integrated systems with in-situ spectroscopy and/or in-line analytical characterization capabilities for material- and time-efficient studies of various physical/chemical processes. Few examples of such processes include homogenous catalytic reactions, partition coefficient of pharmaceutical compounds, colloidal synthesis of semiconductor nanocrystals, and hydrophilicity switching of switchable solvents. Despite different applications, the common theme among all multi-phase microfluidic technologies that I’ve developed so far has been the focus on realizing the early promise of microfluidics on minimizing the reagents volume used for each experimental condition while maximizing the amount of data obtained. My latest article builds on my experience in integrated microfluidic systems and in-situ spectroscopy techniques to study the effect of early stage mixing times on the optical properties of in-flow synthesized colloidal perovskite nanocrystals.

What aspect of your work are you most excited about at the moment?

Development of microfluidic technologies to contribute towards the next generation of energy-efficient and solution phase-processed photovoltaics.

In your opinion, what is the biggest advantage to using colloidal organic/inorganic metal-halide perovskite nanocrystals for photovoltaics over the current materials?

From materials perspective, hybrid organic/inorganic perovskite nanocrystals are inexpensive and can be manufactured using solution-phase processing techniques. In addition, these shiny nanocrystals possess high surface defect tolerance, high and broad absorption coefficient, high quantum-yield, and long charge carrier lifetime and diffusion length. Combining the superior physicochemical properties of colloidal perovskite nanocrystals with precise band-gap engineering and unparalleled experimental parameter control offered by multi-phase microfluidic platforms make them a promising candidate for the next generation photovoltaics and LED displays.

What do you find most challenging about your research?

Learning about details of different steps involved in manufacturing thin-film solar cells. It is challenging but fascinating to learn.

In which upcoming conferences or events may our readers meet you?

I am currently conducting this interview from MicroTAS 2017 conference in Savannah, GA. I will be attending the Annual AIChE meeting in Minneapolis, MN, between Oct 29 – Nov 3.

How do you spend your spare time?

Catching up with our favorite TV shows (TWD and GOT) with my wife

Which profession would you choose if you were not a scientist?

I would most probably choose to become an architect. I was (and am) always fascinated by “futuristic looking buildings” around the world such as Galaxy Soho in Beijing and Notre Dame du Haut in Ronchamp. The level of attention to details and precision in engineering are just mind-blowing.

Can you share one piece of career-related advice or wisdom with other early career scientists?

In my opinion, focusing on one long-term visionary project that fits your research interests and expertise should be the main goal of a junior faculty. There are so many interesting problems around you, but there is probably only ONE big-impact problem that would truly fit your background which you (hopefully) can solve within your precious pre-tenure adventures.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)