Pioneers of Miniaturization Lectureship 2021

Lab on a Chip and Dolomite are proud to sponsor the sixteenth Pioneers of Miniaturization Lectureship, to honour and support the up and coming, next generation of scientists who have significantly contributed to the understanding or development of miniaturised systems.


This year’s Lectureship will be presented at µTAS 2021 with the recipient receiving a prize of US$2,000.

The Lectureship consists of the following elements:

  • A prize of US$2,000. No other financial contribution will be offered
  • A certificate recognising the winner of the lectureship
  • The awardee is required to give a short lecture at the µTAS 2021 event

Eligibility Criteria

To be eligible for the lectureship, candidates must:

  • Have completed their PhD
  • Be actively pursuing an independent research career on miniaturised systems.
  • Be at an early-mid career stage of their independent career (typically this will be within 15 years of completing their PhD, but appropriate consideration will be given to those who have taken a career break or followed a different study path).

Nomination process

To be considered for the 2021 lectureship, the following must be sent to the Editorial Office

  • A letter of recommendation with the candidate’s accomplishments and why the lectureship is deserved.
  • The nominee must be aware that he/she has been nominated for this lectureship.
  • A complete nomination form (includes list of the candidate’s relevant publications or recent work, candidate’s scientific CV, and full contact details)
  • Nominations from students and self-nominations are not permissible.

Selection criteria and judging process

  • Nominations must be made via email to loc-rsc@rsc.org using the Dolomite/Lab on a Chip Pioneers of Miniaturization Lectureship nomination form and a letter of recommendation.
  • The decision on the winner of the lectureship will be made by a panel of judges comprising a representative from Dolomite and members from the Lab on a Chip Editorial Board, coordinated by the Executive Editor of Lab on a Chip.
  • The award is for outstanding contributions to the understanding or development of miniaturised systems. This will be judged mainly through their top 1-3 papers and/or an invention documented by patents/or a commercial product. Awards and honorary memberships may also be considered.

 

Nomination Deadline: 31 May 2021 


Download Nomination form here 

Dolomite Microfluidics a leading provider of microfluidics-based solutions for a range of applications including drug encapsulation, droplet manufacture and particle generation. They manufacture complete systems as well as individual modular components to balance ease of use with flexibility.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Lab on a Chip presents prestigious prizes at MicroTAS 2019

The µTAS 2019 Conference was held from 27-31st October in Basel, Switzerland. Maria Southall, Deputy Editor of Lab on a Chip, attended the conference and announced the prestigious Lab on a Chip awards which include the Pioneers of Miniaturization Lectureship (in partnership with Dolomite Microfluidics), the Widmer Young Researcher Poster Prize and the Art in Science competition (in partnership with NIST). All three competitions received many fantastic submissions and we are delighted to present the winners, below:

Lab on a Chip/Dolomite “Pioneers of Miniaturization” Lectureship

Professor Hang Lu (Georgia Tech, USA) was awarded the 14th “Pioneers of Miniaturization” Lectureship, sponsored by Dolomite and Lab on a Chip. The “Pioneers of Miniaturization” Lectureship rewards early to mid-career scientists who have made extraordinary or outstanding contributions to the understanding or development of miniaturised systems. Professor Lu received a certificate, a monetary award and delivered a short lecture at the conference.

Left to right: Mark Gilligan (Dolomite), Hang Lu (winner) and Maria Southall (Lab on a Chip)

Left to right: Mark Gilligan (Dolomite), Hang Lu (winner) and Maria Southall (Lab on a Chip)

 

 

Hang Lu (winner) delivering her lecture

Hang Lu (winner) delivering her lecture

Art in Science Competition

Greg Cooksey from the National Institute of Standards & Technology (NIST) and Lab on a Chip Deputy Editor Maria Southall presented the Art in Science award to Joseph de Rutte from UCLA for his entry “A Cell’s World”. This award aims to highlight the aesthetic value in scientific illustrations while still conveying scientific merit.

Greg Cooksey (NIST), Joseph de Rutte (UCLA, winner) and Maria Southall (Lab on a Chip)

Left to right: Greg Cooksey (NIST), Joseph de Rutte (UCLA, winner) and Maria Southall (Lab on a Chip)

Fluorescent image of uniform droplets formed using structured microparticles. Fluorescently labeled particles are suspended in a water solution and agitated with oil and surfactant. This platform is used to encapsulate single-cells and measure their secretions.

Winning image ‘A Cell’s World’: Fluorescent image of uniform droplets formed using structured microparticles. Fluorescently labeled particles are suspended in a water solution and agitated with oil and surfactant. This platform is used to encapsulate single-cells and measure their secretions.

Widmer Young Researcher Poster Prize

The Widmer Young Researcher Poster Prize was awarded to Roberto Rodriguez-Moncayo from the Centro de Investigación y de Estudios Avanzados del IPN, Mexico, for his poster on “Integrated microfluidic device for universal secretory immunophenotyping studies for adherent and non adherent cells”.

Maria Southall (left) with Roberto Rodriguez-Moncayo (winner)

Maria Southall (left, Lab on a Chip) with Roberto Rodriguez-Moncayo (winner)

Congratulations to all the winners at the conference, we look forward to seeing you at µTAS 2020 in Palm Springs, California, USA! 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

We are delighted to announce that Hang Lu is the 2019 winner of the “Pioneers of Miniaturization” Lectureship!

The 14th “Pioneers of Miniaturization” Lectureship, sponsored by Dolomite and Lab on a Chip , is for early to mid-career scientists who have made extraordinary or outstanding contributions to the understanding or development of miniaturised systems.

The 2019 “Pioneers of Miniaturization” Lectureship will be presented to Professor Lu at the µTAS 2019 Conference in Basel, Switzerland, being held on 27-31 October 2019. Professor Lu will receive a certificate, a monetary award and will give a short lecture during the conference.

Many congratulations to Professor Hang Lu on this achievement from the Lab on a Chip Team!

About the Winner

Professor Hang Lu is the Love Family Professor, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, USA.

Professor Lu earned her PhD in Chemical Engineering from Massachusetts Institute of Technology, USA in 2003. After a postdoctoral fellowship with Professor Cornelia I. Bargmann, at University of California San Francisco and the Rockefeller University, she was appointed as an Assistant Professor at School of Chemical and Biomolecular Engineering, Georgia Institute of Technology.

In recognition of her outstanding achievements, Professor Lu has received numerous awards and international recognition, including being invited to join Board of Directors, Chemical and Biological Microsystems Society, invited to present at the Nobel Symposium on Microfluidics (2017) and the National Academy of Sciences’ Kavli Frontiers of Science Symposia (2014, 2012, 2009), awarded the ACS Analytical Chemistry Young Innovator Award, Chemical and Biological Microsystems Society (2013), Council of Systems Biology in Boston (CSB2) Prize in Systems Biology (2011), a National Science Foundation CAREER award (2010), an Alfred P. Sloan Foundation Research Fellowship (2009), a DARPA Young Faculty Award (2007), a DuPont Young Professor Award (2006), the Saville Lectureship of Princeton University (2013), the H. C. Van Ness Award Lectures of Rensselaer Polytechnic Institute (2011), and is a fellow of the American Institute for Medical and Biological Engineering (AIMBE) and  a fellow of the American Association for the Advancement of Science (AAAS). She has authored more than 140 peer-reviewed publications and has served on the Editorial Board of Lab on a Chip as Associate Editor since 2017. She is currently the director of the Interdisciplinary Bioengineering Program, and the associate director of the NSF-Simons Foundation supported Southeast Center for Mathematics and Biology, Georgia Institute of Technology.

Professor Lu has pioneered the use of microfluidic systems for imaging and performing genetic studies with small organisms, primarily the nematode C. elegans. In a series of studies published since 2008 she established a set of technologies to streamline imaging, phenotyping, and sorting of C. elegans based on features that are difficult to distinguish and discern by human eyes. The throughput of these technologies were often 1,000 times that of conventional approaches. Professor Lu’s technology has enable faster and more accurate experiments and revolutionized how genetic screens and high-content imaging experiments are done currently in other scientists’ labs. In parallel, her lab has also engineered micro systems for high-content experiments with cells, aggregates, organoids, and embryos to extract high-dimensional information for systems biology studies.

The Lu group performs research at the interface of engineering and biology. They engineer automated microfluidic systems, microscopy tools, and image imformatic technologies to address questions in neuroscience, cell biology, and biotechnology that are difficult to answer using conventional techniques. Applied to the study of fundamental biological questions, these new techniques allow the Lu group to gather large-scale quantitative data about complex systems.

Learn about the Lu group online

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Pioneers of Miniaturization Lectureship 2019: Open for Nominations

Lab on a Chip and Dolomite are proud to sponsor the fourteenth Pioneers of Miniaturization Lectureship, to honour and support the up and coming, next generation of scientists who have significantly contributed to the understanding or development of miniaturised systems.

This year’s Lectureship will be presented at the µTAS 2019 Conference in Basel, Switzerland with the recipient receiving a prize of US$2,000.

The Lectureship consists of the following elements:

  • A prize of US$2,000. No other financial contribution will be offered
  • A certificate recognising the winner of the lectureship
  • The awardee is required to give a short lecture at the 2019 µTAS Conference

 

Eligibility Criteria

To be eligible for the lectureship, candidates must:

  • Have completed their PhD
  • Be actively pursuing an independent research career on miniaturised systems.
  • Be at an early-mid career stage of their independent career (typically this will be within 15 years of completing their PhD, but appropriate consideration will be given to those who have taken a career break or followed a different study path).

Nomination process

To be considered for the 2019 lectureship, the following must be sent to the Editorial Office

  • A letter of recommendation with the candidate’s accomplishments and why the lectureship is deserved.
  • The nominee must be aware that he/she has been nominated for this lectureship.
  • A complete nomination form (includes list of the candidate’s relevant publications or recent work, candidate’s scientific CV, and full contact details)
  • Nominations from students and self-nominations are not permissible.

Selection criteria and judging process

  • Nominations must be made via email to loc-rsc@rsc.org using the Dolomite/Lab on a Chip Pioneers of Miniaturization Lectureship nomination form and a letter of recommendation.
  • The decision on the winner of the lectureship will be made by a panel of judges comprising a representative from Dolomite and members from the Lab on a Chip Editorial Board, coordinated by the Executive Editor of Lab on a Chip.
  • The award is for outstanding contributions to the understanding or development of miniaturised systems. This will be judged mainly through their top 1-3 papers and/or an invention documented by patents/or a commercial product. Awards and honorary memberships may also be considered.

Nomination Deadline: 31 May, 2019

Extended deadline : 15th June, 2019 

Download nomination form here

Previous Winners

  • 2018: Professor Sunghoon Kwon, Seoul National University, South Korea
  • 2017: Professor Aaron Wheeler, University of Toronto, Canada
  • 2016: Professor Daniel Irimia, Massachusetts General Hospital, USA
  • 2015: Professor Dino Di Carlo, University of California, Los Angeles, USA
  • 2014: Professor Sangeeta N. Bhatia, Massachusetts Institute of Technology, USA
  • 2013: Professor Shuichi Takayama, University of Michigan, USA
  • 2012: Professor Andrew deMello, ETH Zürich, Switzerland
  • 2011: Professor Ali Khademhosseini, Massachusetts Institute of Technology, USA
  • 2010: Professor Stephen Quake, Stanford University, USA
  • 2009: Professor Abe Lee, University of California, Irvine, USA
  • 2008: Dr Patrick Doyle, Massachusetts Institute of Technology, USA
  • 2007: Dr Manabu Tokeshi, Nagoya University, Japan
  • 2006: Dr David Beebe, University of Wisconsin, USA

Sponsors

Dolomite

Dolomite, part of the Blacktrace group, is the world leader in the design and manufacture of microfluidic products. Our systems are flexible and modular, allowing users to execute a wide range of applications in biology, chemistry, drug discovery, food, cosmetics, and academia. With expertise on hand, we can talk to you about your needs to ensure you find the right system for you and your research.

Lab on a Chip

Lab on a Chip provides a unique forum for the publication of significant and original work related to miniaturisation, at the micro- and nano-scale, of interest to a multidisciplinary readership. The journal seeks to publish work at the interface between physical technological advancements and high impact applications that are of direct interest to a broad audience.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Organ-on-a-Chip systems-translating concept into practice Thematic Collection

We are pleased to announce a new Thematic Collection on Organ-on-a-Chip systems, translating concept into practice!

The first collection of papers on “Organ-body-and disease-on-a-Chip” collection has proved to be popular with the community. The collection has given this emerging field an identity and an effective venue for others to learn of the breadth, depth, and importance of this emerging area. We are delighted to announce that Michael Shuler (Cornell University, USA) will be acting as Thought Leader this follow-up collection.

We believe that a second collection highlighting efforts to translate this concept into practice would be valuable. While proof-of-concept papers for potential devices remains important, there has been significant progress in the last two years towards addressing the practical issues of translating these concepts into workable systems that will be adopted by industry and approved by regulators. While pharmaceuticals remain the primary target, it is clear that these devices will play important roles in the cosmetic, food, and chemical industries.

For regulatory approval and industrial adoption these devices need to be simple (easy to run by a technician), largely self-contained, low cost, reliable, incorporate advanced analytical techniques, and have efficient software to convert measurements into predictions of human response. Some of the initial proof-of-concept devices are too complicated and hence costly to be implemented industrially.  For an academic paper a lab can afford to have a high failure rate of systems as long as sufficient systems function to provide a robust data set.  For an industrial setting a high success rate will be necessary for adoption.  Automation of devices and efficient data collection and interpretation will be necessary for systems to have a broad impact and reduce labour costs.  Although much of the industrial data are proprietary, it should be possible to take historical cases where a drug candidate was approved and then withdrawn from the market due to toxicity and determine if the failure of the drug could have been anticipated from studies with a microphysiological (MPS) system.  Such examples could provide a compelling rationale for inclusion of MPS systems particularly in the later stages of the preclinical drug development process.

A series of papers that address aspects of the issues involved in moving from “proof-of-principle” devices to systems that can be routinely incorporated into testing of drugs, cosmetics, food ingredients, and chemicals would be valuable to the development of the field of microphysiological systems. We seek contributions that will help us fulfill this goal.

Lab on a Chip publishes the best work on significant and original work related to minia-turisation, at the micro- and nano-scale, of interest to a multidisciplinary readership. The journal seeks to publish work at the interface between physical technological advancements and high impact applications that are of direct interest to a broad audience.

Extraordinarily novel organ-on-a-chip systems that demonstrate unique new functions are also welcome.

Interested in submitting to the collection? 

We welcome submissions of original research articles and reviews to this collection and the collection is open for submissions.

Articles will be published as they are accepted and added to this online collection. They will receive extensive promotion throughout the submission period and as a complete collection.

If you are interested in submitting to the series, please get in touch with the Lab on a Chip Editorial Office at loc-rsc@rsc.org.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Lab on a Chip Thematic Collections

We’ve brought together all of our latest Lab on a Chip Article Collections, Themed Issues, and Editor’s Choice collections to enable you to easily navigate to content most relevant to you. We hope you enjoy reading the papers in these collections!

Ongoing Collections

Thematic Collections

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Avoiding air bubbles when filling microfluidic chips by use of an ultrasonic bath

Leonie Bastin1 and Karen Alim1,2

1 Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany

2 Physics Department, Technical University of Munich, Germany

Why is this useful?

In microfluidic devices with small structures, air bubbles are often trapped at interfaces, corners or structures within the channel. The presented method is reproducible, fast, and only requires an additional ultrasonic bath. Vibrations from the ultrasonic bath detach the bubbles from surfaces. By flushing the chip with water at the same time, the bubbles are transported out.

What do I need?

  • An ultrasonic bath
  • The microfluidic device
  • A syringe filled with water

What do I do?

  1. Connect the syringe to the microfluidic device.
  2. Lay the device into the ultrasonic bath and turn it on.
  3. Manually fill the device with water, varying the pressure in pulses of around a second in length (see inset in Figure 1A). Use high flow rates! In our case, we used flow rates of approximately 50 microliters per second during the pulses.
  4. Before the syringe is empty, turn off the ultrasound bath, take the device out and check whether there is any air left in the channel.
  5. If there is air left in the chip, press some water through with high speed when the device is not laying in the ultrasound bath.
  6. If there are still bubbles left, repeat the procedure.
  7. Once no bubbles are left in the chip, insert the syringe for your experiment on the other side of the chip. To avoid the appearance of new bubbles, press out some of the liquid so that a drop appears at the outlet before you insert the syringe.

 

Figure 1: (A) Schematic drawing of the setup. The tubing at the outlet is optional if you fill the chip with water. The manual pressure pulses are sketched in the inset. (B) Photo of the setup without tubing at the outlet. (C) Fluorescence microscopy image of a chip filled with fluorescein to visualise the structure that is shown in D and E only filled with water. The center part is filled with 100 micrometer wide PDMS-pillars, which are arranged in a hexagonal structure. (D) Photo of a small region of the chip when filled with water without using the ultrasound method. Many air bubbles are visible between the pillar structures (arrows). (E) Photo of the same region after using the ultrasound method. No air bubbles are left in the chip.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series – Aaron Streets

Lab on a Chip is very excited to introduce our most recent Emerging Investigator, Dr Aaron Streets! 

Aaron received a Bachelor of Science in Physics and a Bachelor of Arts in Art at the University of California, Los Angeles. He completed his PhD in Applied Physics at Stanford University with Dr. Stephen Quake. Aaron then went to Beijing, China as a Whitaker International Postdoctoral Fellow and a Ford postdoctoral fellow and worked with Dr. Yanyi Huang in the Peking University BIOPIC institute. Aaron joined the faculty of the University of California, Berkeley as an Assistant Professor in Bioengineering in 2016. He is currently a core member of the Biophysics Program and the Center for Computational Biology and he is a Chan Zuckerberg Biohub investigator. Aaron has received the NSF Early Career award and was recently named a Pew Biomedical Scholar.

You can read Aaron’s article, μCB-seq: microfluidic cell barcoding and sequencing for high-resolution imaging and sequencing of single cells, here.

If you’d like to know more about Aaron and his research, read the short interview with him below!


Your recent Emerging Investigator Series paper focuses on microfluidic cell barcoding and sequencing. How has your research evolved from your first article to this most recent article?

My first publication used a microfluidic-based dynamic light scattering apparatus to investigate protein crystallization. While this study relied on the integration of microfluidic control and optical analysis, it was really focused on the physics of biological macromolecule phase transitions. No cells, no sequencing, not even any microscopy.  The continuous thread that has persisted through my research has been the integration of multilayer microfluidic circuits with advanced optical analysis techniques, however we now take advantage of this technology to study single cells. This means that we rely on a lot of additional experimental and computational tools upstream and downstream of the microfluidics, including interfacing directly with biological samples that are input into our devices, as well as the library preparation, high-throughput sequencing, and ultimately genomic data analysis that are essentially the device outputs. So, while “lab-on-chip” technology is still at the core of our research, we rely heavily on a “chip-in-a-lab” paradigm.

What aspect of your work are you most excited about at the moment?

After a decade-and-a-half of working with microfluidic technology it is extremely energizing to see microfluidics percolate into all corners of biology and the biomedical sciences. It is particularly exciting to see microfluidic platforms become the primary driving technology that has advanced the field of single-cell biology. From the integrated microfluidic circuits that provided the first commercial single-cell RNA-seq platforms, to the droplet microfluidics and microwell technology that has brought ultra-high-throughput single-cell genomics to the masses and has fuelled the Human Cell Atlas Project. In our lab, we are excited about taking a deeper dive into single-cell measurements, and instead of optimizing throughput, really pushing the information content that can be extracted from a single cell. One of the beautiful aspects of integrated microfluidic circuits is that they pair incredibly well with advanced microscopy techniques while facilitating single-cell manipulation and sequential molecular biology protocols. We are excited about using these capabilities to make multimodal measurements on single cells, connecting genomic information to the spatial organization of molecules and other morphological phenotypes that are probed more efficiently with light.

In your opinion, what is the biggest advantage to using the μCB-seq platform compared to other methods?

It is easy to take a high-resolution image of a single cell, and it is easy (nowadays) to amplify and sequence the RNA or DNA from a single cell. It is still challenging, however, to take a high-resolution image of a single cell, and then pluck that same cell from the microscope slide and sequence it.  Microfluidic cell barcoding and sequencing (μCB-seq) provides a way to do just that for many cells in parallel. With this platform, we are really just using microfluidic chambers to help keep track of which cell was imaged before sequencing. To make this work, we use DNA barcodes that are pre-loaded into the microfluidic device so that each single-cell imaging chamber gets a unique cell barcode. After imaging each cell, that unique barcode gets imprinted into the cDNA from each respective cell so that we can pool all the cDNA from the lanes of our device and make a single sequencing library. After sequencing, the barcode will tell us which transcripts came from which cell, linking gene expression to image data.

What do you find most challenging about your research?

The most challenging aspects of our work tend to be figured out by the PhD students. These are the details you can’t find in a textbook like how to make a device robust to thermal cycling while under a microscope, or where did the cDNA go, or why isn’t this thing working? The truth is that there is a significant up-front investment in resources and time to get these platforms functional. Furthermore, depending on the type of microscopy, many of these tools cannot be ported into other labs. Once we get something like μCB-seq to the proof-of-principle stage there is another set of obstacles to make it a robust technology that we can train collaborators to use efficiently, so that the technology can have impact. Getting these tools into the hands of people who want to use them is still a non-trivial challenge, especially as the front-end and back-end of these experiments require more and more equipment and expertise. 

At which upcoming conferences or events may our readers meet you?

I would love to see everyone at the Physics and Chemistry of Microfluidics Gordon Research Conference in 2021. But if we can’t see each other in Tuscany, I look forward to seeing you on Zoom!

How do you spend your spare time? 

These days? Good question. I enjoy reading science fiction. I am an avid basketball fan. I love listening to live music. So I guess the answer is… reading science fiction.

Which profession would you choose if you were not a scientist?

I would be a world-famous artist. (Are we allowed to choose how successful we would be? Or just the profession?) Ok, I would be an artist… and a bartender. I studied art in undergrad at UCLA and I always imagined an alternate career making paintings and sculptures and art installations. 


If you’re interested in other articles in our Emerging Investigator Series, the whole collection can be found here

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Digital microfluidics for handling picoliters

Just another day at the chemistry lab. Get in, make sure to wear PPE thoroughly, grab a pipette set, start reading, and applying the steps of the experiment. Pipette hundreds of microliters of a solution, done. Pipette tens of microliters of another solution, no problems. Pipette several picoliters of …, what? Wait!  Can we pipet sub-microliter size liquids? The answer will be yes at this time, but we will twist it a bit. As the name suggests, microfluidics is the art of handling tiny amounts of liquids. Can it be helpful when it comes to handling sub-microliter size droplets?

Since the early 2000s, digital microfluidics (DMF) has been proposed as a more versatile candidate in sample processing applications. Most DMF devices use electric field application to control the displacement of droplets, which are separated from the underlying electrodes via a dielectric layer and an nm-thick hydrophobic layer. Once we actuate an electrode, the contact angle, and in turn, the hydrophobicity, of a droplet sitting on top of the electrode decreases due to surface energy changes. This would be a golden moment because if we actuate a neighboring electrode now, the droplet will displace towards the activated electrode. Based on this principle, we can transport, dispense, merge, and split droplets in a digital microfluidic platform.

One constraint of current digital microfluidic systems is that droplet volume is limited by electrode area. Droplets can only be reliably split and displaced above a certain volume as they will not be capable of displacing towards another electrode if their contact area is too small. Working with smaller scale electrodes does not solve the problem either, but it makes evaporation-related problems more pronounced.

In the recent Lab on a Chip article of researchers from the University of Macau (CN) and the University of Lisboa (PT) demonstrated the controllable ejection of satellite droplets to create a digital microfluidic platform that is capable of transporting picoliter-volume droplets. Precise control of ejection position and volume was made possible using a narrow electrode, or a jetting bar, which focused the area of high voltage AC actuation. During a rapid change in electric field intensity beyond the contact angle saturation threshold voltage, the excess energy is released by the ejection of satellite droplets. The dispensing droplet would release picoliter sized volumes onto the jetting bar which were then collected by another droplet moving over the jetting bar (Fig. 1). Volumes between 5 pL to 20 nL can be produced by repeatedly dispensing and collecting picoliter-size droplets at the jetting bar. The dispensed volume could also be controlled by changing increasing the width of the jetting bar for greater volumes. Dispensing volume can also be carefully controlled by the strength of the electric field, the actuation frequency, and actuation time.

The authors showed that the picoliter- volume dosing system can be used in a dequenching assay. Fluorescent DNA probes specific to S. aureus were delivered to droplets containing S. aureus and K. pneumonia using this assay. The dispensed satellite droplets successfully delivered the DNA probes to the droplets. The authors built a quantitative relationship between the degree of fluorescence and volume delivered in the S. aureus droplet accordingly. The authors think that this new technique may make microfluidics more accessible in sample preparation for clinical and lab studies in the future.

Figure 1. The dispensing drop releases satellite droplets under high voltage AC actuation of the jetting bar. The satellite droplets are then taken up by another droplet, facilitating volume transfer without the merging of either the dispensing or pickup-up droplet.

 

To download the full article for free* click the link below:

Turning on/off satellite droplet ejection for flexible sample delivery on digital microfluidics

Haoran Li, Ren Shen, Cheng Dong, Tianlan ChenYanwei Jia, Pui-In Mak and Rui P. Martins, Lab Chip, 2020, Lab on a Chip Hot Articles

DOI: 10.1039/D0LC00701C

 

About the Webwriters

Burcu Gumuscu is an assistant professor in BioInterface Science Group at Eindhoven University of Technology in the Netherlands. She strives for the development, fabrication, and application of smart biomaterials to realize high-precision processing in high-throughput microfluidic settings. She specifically focuses on the design and development of lab-on-a-chip devices containing hydrogels for diversified life sciences applications. She is also interested in combining data-mining and machine learning techniques with hypothesis-driven experimental research for future research.

 

Miguel FaaseMiguel Faase is a Ph.D. student in BioInterface Science Group at Eindhoven University of Technology in the Netherlands. He focuses on the development of high-throughput screening platforms for biomaterial research under the supervision of Burcu Gumuscu.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Announcing our new Editor-in-Chief – Aaron Wheeler

We are delighted to announce that in January 2021, Professor Aaron Wheeler (University of Toronto, Canada) will take over as the new Editor-in-Chief for Lab on a Chip.

Professor Wheeler is Canada Research Chair in Microfluidic Bioanalysis at the University of Toronto. He has been recognized with a number of honors including the E.W.R. Steacie Memorial Fellowship from the Canadian National Sciences and Engineering Research Council, the Arthur F. Findeis Award from the American Chemical Society, and the Joseph Black Award from the Royal Society of Chemistry. Professor Wheeler’s research group develops microfluidic tools to solve problems in chemistry, biology, and medicine.

Aaron has been an Associate Editor for Lab on a Chip since 2013, and we are delighted that he will continue to handle submissions for Lab on a Chip. Aaron’s experience and knowledge of the journal and its community, combined with his academic experience, mean he will be a fantastic Editor-in-Chief for the journal.

“I’m honored to be taking up the duties of Editor-in-Chief for Lab on a Chip, “Perhaps uniquely relative to other journals, Lab on a Chip played a critical role in the birth and growth of a new field of research. Since the year 2000, the journal has been the ‘home’ for the best that the community has to offer, and I look forward to continuing that tradition going forward” says Aaron, “I am in awe of the diversity of topics that the Lab on a Chip community has made an impact in, be that cells or gels, soil or oil, or trees or bees, there is a Lab on a Chip for that. I can’t imagine a community that is more fun to be a part of.”

This news does of course mean that Professor Abe Lee will be standing down as Editor-in-Chief of Lab on a Chip. Professor Lee has served on the Editorial Board of Lab on a Chip for eleven years, first as an Editorial Board member, then an Associate Editor and finally as our Editor-in-Chief, and we are extremely grateful to Abe for his creativity and leadership throughout this period. We wish him all the best, and look forward to continuing to work with him as he moves to hold a position on our Advisory Board.

Read some of Aaron’s most recent publications below, free to access until 17th December 2020.

Direct loading of blood for plasma separation and diagnostic assays on a digital microfluidic device
Christopher Dixon, Julian Lamanna and Aaron R. Wheeler
Paper
Lab Chip, 2020, 20, 1845-1855

When robotics met fluidics
Junjie Zhong, Jason Riordon, Tony C. Wu, Harrison Edwards, Aaron R. Wheeler, Keith Pardee, Alán Aspuru-Guzik and David Sinton
Perspective
Lab Chip, 2020, 20, 709-716

Digital microfluidics and nuclear magnetic resonance spectroscopy for in situ diffusion measurements and reaction monitoring
Ian Swyer, Sebastian von der Ecken, Bing Wu, Amy Jenne, Ronald Soong, Franck Vincent, Daniel Schmidig, Thomas Frei, Falko Busse, Henry J. Stronks, André J. Simpson and Aaron R. Wheeler
Paper
Lab Chip, 2019, 19, 641-653

Towards a personalized approach to aromatase inhibitor therapy: a digital microfluidic platform for rapid analysis of estradiol in core-needle-biopsies
Sara Abdulwahab, Alphonsus H. C. Ng, M. Dean Chamberlain, Hend Ahmado, Lucy-Ann Behan, Hala Gomaa, Robert F. Casper and Aaron R. Wheeler
Paper
Lab Chip, 2017, 17, 1594-1602

Pre-concentration by liquid intake by paper (P-CLIP): a new technique for large volumes and digital microfluidics
Darius G. Rackus, Richard P. S. de Campos, Calvin Chan, Maria M. Karcz, Brendon Seale, Tanya Narahari, Christopher Dixon, M. Dean Chamberlain and Aaron R. Wheeler
Paper
Lab Chip, 2017, 17, 2272-2280

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Lab on a Chip continues partnership with online MicroTAS 2020: our prize winners blog!

The online µTAS 2020 meeting was held from 4-9th October, chaired by Séverine Le Gac and Hang Lu. Philippa Ross, Executive Editor of Lab on a Chip, contributed to a panel discussion on Ethics in Science, and Millie Newman, Deputy Editor of Lab on a Chip, attended to announce the winners of our prestigious Lab on a Chip-sponsored prizes. We’d like to thank all those who entered the awards this year, and to the judging panels who helped us select the winners. All three prizes received excellent submissions and we’re delighted to announce the winners below.


Lab on a Chip/Dolomite Pioneers of Miniaturization Lectureship
Professor Wilbur Lam (Georgia Institute of Technology/Emory University, USA), has been awarded the 15th Pioneers of Miniaturisation Lectureship, sponsored by Dolomite and Lab on a Chip. The Pioneers of Miniaturization Lectureship rewards early to mid-career scientists who have made extraordinary or outstanding contributions to the understanding or development of miniaturised systems.
Like previous years, Professor Lam will receive a monetary award, certificate and plaque, and gave a stunning talk during the online µTAS 2020 conference on clinical translations of microfluidic systems and lessons learned from the COVID-19 pandemic.


 

Art in Science Competition
In collaboration with Greg Cooksey from the National Institute of Standards & Technology (NIST), we were pleased to present the Art in Science award to Qinyu Li (Shanghai Jiao Tong University), for his image titled “A microvascular ring”. This award highlights the aesthetic value of scientific illustrations while still conveying scientific merit.
The image is a fluorescent photograph of a 3D vasculogenic network from human umbilical vein endothelial cells inside a ring-shaped polymethylmethacrylate microfluidic chamber.


Widmer Poster Prize
The Widmer Poster Prize was awarded this year to Janosch Hauser (KTH Royal Institute of Technology), for his poster and video presentation on “TEM grid preparation with minimal user interaction”. Janosch put a huge amount of time and effort into his presentation, and the judges were very impressed.


Congratulations to all the winners at this year’s online µTAS conference. We look forward to seeing you at µTAS 2021, hopefully in-person, in Palm Springs, California!

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Wearable and Implantable Sensors thematic collection published

Check out our new Lab on a Chip themed collection, focussing on Wearable and Implantable Sensors.

The collection was curated by members of the Lab on a Chip Editorial Board, and highlights some excellent recent papers in this area. The collection features papers addressing the issues involved in creating wearable or implantable sensors and their applications for diagnostics, medicine and therapeutics, health awareness and other novel applications.

We hope you enjoy reading these articles!*

 


Wearable sensors: modalities, challenges, and prospects
J. Heikenfeld, A. Jajack, J. Rogers, P. Gutruf, L. Tian, T. Pan, R. Li, M. Khine, J. Kim, J. Wang and J. Kim
Critical Review, Lab on a Chip Recent Review Articles, Lab on a Chip Recent Open Access Articles
Lab Chip, 2018, 18, 217-248

A fluorometric skin-interfaced microfluidic device and smartphone imaging module for in situ quantitative analysis of sweat chemistry
Yurina Sekine, Sung Bong Kim, Yi Zhang, Amay J. Bandodkar, Shuai Xu, Jungil Choi, Masahiro Irie, Tyler R. Ray, Punit Kohli, Naofumi Kozai, Tsuyoshi Sugita, Yixin Wu, KunHyuck Lee, Kyu-Tae Lee, Roozbeh Ghaffari and John A. Rogers
Paper
Lab Chip, 2018, 18, 2178-218


Electrostatically gated nanofluidic membrane for ultra-low power controlled drug delivery
Nicola Di Trani, Antonia Silvestri, Antons Sizovs, Yu Wang, Donald R. Erm, Danilo Demarchi, Xuewu Liua and Alessandro Grattoni
Paper
Lab Chip, 2020, 20, 1562-1576

Liquid metal electrode-enabled flexible microdroplet sensor
Renchang Zhang, Zi Ye, Meng Gao, Chang Gao, Xudong Zhang, Lei Li and Lin Gui
Paper
Lab Chip, 2020, 20, 496-504


A flexible enzyme-electrode sensor with cylindrical working electrode modified with a 3D nanostructure for implantable continuous glucose monitoring
Zhihua Pu, Jiaan Tu, Ruixue Han, Xingguo Zhang, Jianwei Wu, Chao Fang, Hao Wu, Xiaoli Zhang,  Haixia Yu and Dachao Li
Paper
Lab Chip, 2018, 18, 3570-3577

Flexible plastic, paper and textile lab-on-a chip platforms for electrochemical biosensing
Anastasios Economou, Christos Kokkinos and Mamas Prodromidis
Critical Review, Lab on a Chip Recent Review Articles
Lab Chip, 2018, 18, 1812-1830


A multi-modal sweat sensing patch for cross-verification of sweat rate, total ionic charge, and Na+ concentration
Zhen Yuan, Lei Hou, Mallika Bariya, Hnin Yin Yin Nyein, Li-Chia Tai, Wenbo Ji, Lu Li and Ali Javey
Paper
Lab Chip, 2019, 19, 3179-3189

A wearable electrofluidic actuation system
Haisong Lin, Hannaneh Hojaiji, Shuyu Lin, Christopher Yeung, Yichao Zhao, Bo Wang, Meghana Malige, Yibo Wang, Kimber King, Wenzhuo Yu, Jiawei Tan, Zhaoqing Wang, Xuanbing Cheng and  Sam Emaminejad
Communication
Lab Chip, 2019, 19, 2966-2972


Passive sweat collection and colorimetric analysis of biomarkers relevant to kidney disorders using a soft microfluidic system
Yi Zhang, Hexia Guo, Sung Bong Kim, Yixin Wu, Diana Ostojich, Sook Hyeon Park, Xueju Wang, Zhengyan Weng, Rui Li, Amay J. Bandodkar, Yurina Sekine, Jungil Choi, Shuai Xu, Susan Quaggin, Roozbeh Ghaffari and John A. Rogers
Paper
Lab Chip, 2019, 19, 1545-1555

Complete validation of a continuous and blood-correlated sweat biosensing device with integrated sweat stimulation
A. Hauke, P. Simmers, Y. R. Ojha, B. D. Cameron, R. Ballweg, T. Zhang, N. Twine, M. Brothers, E. Gomez and J. Heikenfeld
Paper
Lab Chip, 2018, 18, 3750-3759


*These articles are free to read for 4 weeks.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Xingyu Jiang joins the Lab on a Chip Editorial Board

Xingyu Jiang

Lab on a Chip is pleased to announce that Professor Xingyu Jiang has recently joined our editorial board. Professor Jiang is a Chair Professor at the Southern University of Science and Technology, Shenzhen, China. He obtained his BS at the University of Chicago (1999) and PhD at Harvard University (Chemistry, 2004). In 2005, he joined the National Center for NanoScience and Technology/the University of the Chinese Academy of Sciences. He moved to the Southern University of Science and Technology in 2018.

Professor Jiang’s research interests include microfluidics and nanomedicine and their applications in diagnostics, screening for therapeutics, as well as engineered tissues. He has over 300 publications in peer-reviewed journals. He was awarded the “Hundred Talents Plan” of the Chinese Academy of Sciences, the National Science Foundation of China’s Distinguished Young Scholars Award, the Scopus Young Researcher Gold Award, and the Human Frontier Science Program Young Investigator Award. He is a Fellow of the Royal Society of Chemistry (UK) and American Institute of Medical and Biological Engineering.

Welcome Xingyu!

 

 


Read some of Professor Jiang’s recent Lab on a Chip publications here*:

Hierarchically structured microchip for point-of-care immunoassays with dynamic detection ranges
Lei Mou, Ruihua Dong, Binfeng Hu, Zulan Li, Jiangjiang Zhang and Xingyu Jiang
Paper
Lab Chip, 2019, 19, 2750-2757

Profiling protein–protein interactions of single cancer cells with in situ lysis and co-immunoprecipitation
Ji Young Ryu, Jihye Kim, Min Ju Shon, Jiashu Sun, Xingyu Jiang, Wonhee Lee and Tae-Young Yoon
Communication
Lab Chip, 2019, 19, 1922-1928

Hand-powered centrifugal microfluidic platform inspired by the spinning top for sample-to-answer diagnostics of nucleic acids
Lu Zhang, Fei Tian, Chao Liu, Qiang Feng, Tingxuan Ma, Zishan Zhao, Tiejun Li, Xingyu Jiang and Jiashu Sun
Paper
Lab Chip, 2018, 18, 610-619


*These articles are free to read for 4 weeks.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Lab on a Chip and Dolomite 2020 Pioneers of Miniaturization Lectureship Winner

Lab on a Chip and Dolomite are delighted to announce the winner of the 2020 Pioneers of Miniaturization Lectureship, Professor Wilbur A. Lam, MD, PhD.

This Lectureship honours and supports the up and coming, next generation of scientists who have significantly contributed to the understanding or development of miniaturised systems.

Professor Lam is a physician-scientist-engineer and clinical pediatric hematologist/oncologist. He is the W. Paul Bowers Research Chair of Pediatrics and Biomedical Engineering at Emory University and Georgia Tech and an attending physician at the Aflac Cancer and Blood Disorders Center of the Children’s Healthcare of Atlanta.

His laboratory focuses on developing microsystems to study and diagnose hematologic diseases including sickle cell disease, thrombotic/bleeding disorders, and leukemia. He is also principal investigator of the Atlanta Center for Microsystems Engineered Point-of-Care Technology (ACME POCT), an integral part of the NIH’s Point-of-Care Technologies Research Network (POCTRN) and RADx COVID-19 initiative.

Professor Lam received his MD from Baylor College of Medicine, going on to earn his PhD in Bioengineering from the University of California, Berkley. He completed his Fellowship in Pediatric Hematology/Oncology and Residency in Pediatrics at the University of California, San Francisco.

Our Pioneers of Miniaturization Lectureship Winner is invited to speak at MicroTAS, and thus Wilbur will be presenting his talk at the online MicroTAS 2020 meeting, 4-9th October 2020.

We our warmest congratulations to Wilbur on his achievement.


Read some of Wilbur Lam’s recent Lab on a Chip papers below:

Interdigitated microelectronic bandage augments hemostasis and clot formation at low applied voltage in vitro and in vivo
Elaissa T. Hardy, Yannan J. Wang, Sanathan Iyer, Robert G. Mannino, Yumiko Sakurai, Thomas H. Barker, Taiyun Chi, Yeojoon Youn, Hua Wang, Ashley C. Brown and Wilbur A. Lam
Lab Chip, 2018, 18, 2985-2993

Probing blood cell mechanics of hematologic processes at the single micron level
Jordan C. Ciciliano, Reza Abbaspour, Julia Woodall, Caroline Wu, Muhannad S. Bakir and Wilbur A. Lam
Lab Chip, 2017, 17, 3804-3816

3D microvascular model recapitulates the diffuse large B-cell lymphoma tumor microenvironment in vitro
Robert G. Mannino, Adriana N. Santiago-Miranda, Pallab Pradhan, Yongzhi Qiu, Joscelyn C. Mejias, Sattva S. Neelapu, Krishnendu Roy and Wilbur A. Lam
Lab Chip, 2017, 17, 407-414


*Free to read until 26th October 2020 with an RSC publishing account.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Modelling arthritis

The function of tissues degrade during the course of human life, whether the cause is genetics, accidents, or wear and tear. Frequently experienced medical conditions associated with aging include blocked arteries, cataracts, and arthritis. The former two can be thoroughly treated via surgeries, but arthritis remains a bane to millions of sufferers because its treatment is rather palliative than intensive.

Let’s take the example of rheumatoid arthritis. It occurs when macrophage cells (a main component of the immune system) attack to the membrane (synovium) that surrounds the joints as a result of an auto-immune response. The damaged synovium thickens significantly, its anatomy undergoes striking changes such as metabolic activation of synoviocytes and continuous mass of cells invading into the cartilage and bone. If unchecked this inflammation can destroy the cartilage and the bone within the joint. What does this mean for the patients? A relatively short answer is painful knees, reduced physical activities, continuous uptake of anti-inflammatory medication, and painkillers. A cure does not yet loom on the horizon, but new tools to model rheumatoid arthritis could definitely make it easier to predict the onset of the disorder.

Peter Ertl and his colleagues at Vienna University of Technology, Austria, decided to tackle this problem in the article they recently published in Lab on a Chip. They researched the mechanisms governing the destructive inflammatory reaction in rheumatoid arthritis by designing a first-ever 3D synovium-on-chip tool, which can monitor the onset and progression of the tissue responses. The researchers were focused on monitoring the behavior of the inflated fibroblast-like synoviocytes, which makes the synovium membrane thicker. They used tumor necrosis factor-alpha (TNF-α) to trigger synoviocytes to demonstrate inflammation response. The chips contained circular microchambers, where surface coatings are applied and Matrigel is filled for obtaining 3D organoids. Different hydrogel types were also examined to observe cell response. For the monitoring, the researchers used collimated laser beams, and the scattered light was collected using embedded organic photodiodes. This powerful optical measurement setup allowed for adjusting the detection range (50 nm to 10 µm) and sensitivity to any tissue construct (Figure 1). The researchers implemented a PDMS waveguide structure to the optical measurement setup to turn the light scattering measurements into reproducible ones. The measurement setup also enabled continuous monitoring of hydrogel polymerization, which was also controlled in this work since the polymerization time influences hydrogel stiffness, which in turn affects the fate of cell behavior. A typical measurement took four days, where the researchers obtained cultures accurately mimicking in-vivo rheumatoid arthritis conditions. A diseased phenotype becomes distinguishable within 2-3 days in the organ-on-chip platform, as this takes at least 14 days in conventional cell culture platforms. The developed tool can very well serve as a new modeling system for inflammatory arthritis and joint-related disease models.

 

Figure 1. Overview of the synovium-on-a-chip system with integrated time-resolved light scatter biosensing.

 

To download the full article for free* click the link below:

Monitoring tissue-level remodelling during inflammatory arthritis using a three-dimensional synovium-on-a-chip with non-invasive light scattering biosensing

Mario Rothbauer, Gregor Höll, Christoph Eilenberger, Sebastian R. A. Kratz, Bilal Farooq, Patrick Schuller, Isabel Olmos Calvo, Ruth A. Byrne, Brigitte Meyer, Birgit Niederreiter, Seta Küpcü, Florian Sevelda, Johannes Holinka, Oliver Hayden, Sandro F. Tedde, Hans P. Kiener and Peter Ertl, Lab Chip, 2020, Lab on a Chip Hot Articles

DOI: 10.1039/c9lc01097a


About the Webwriter

Burcu Gumuscu is an assistant professor in BioInterface Science Group at Eindhoven University of Technology in the Netherlands. She strives for the development, fabrication, and application of smart biomaterials to realize high-precision processing in high-throughput microfluidic settings. She specifically focuses on the design and development of lab-on-a-chip devices containing hydrogels for diversified life sciences applications. She is also interested in combining data-mining and machine learning techniques with hypothesis-driven experimental research for future research.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)