Emerging Investigator Series: Wei Liu

Dr. Wei Liu received her PhD in Environmental Science from the Aix-Marseille University in 2009. From 2010 to 2017, She held several research positions at European Center for Research and Education in Environmental Geoscience (CEREGE) and French Alternative Energies and Atomic Energy Commission (CEA). In 2017, she joined the University of Geneva, department F.-A Forel for environmental and aquatic sciences as senior fellow in research and teaching. Dr. Liu’s research is focused on the mechanism of interaction at nano-bio interface and the biological effects of nanomaterials at molecular, cellular and organism scale.

Read Wei’s Emerging Investigator Series article “Emerging investigator series: Metal nanoparticles in the freshwater: transformation, bioavailability and effects on invertebrates” and read more about her in the interview below:

Your recent Emerging Investigator Series paper focuses on Metal nanoparticles in the freshwater: transformation, bioavailability and effects on invertebrates. How has your research evolved from your first article to this most recent article?

My first article focused on the cellular bioenergetics and the geno-toxicity of metallic pollutants, an extension from my graduate work. After my PhD, I did research in the field of environmental nanoscience at CEREGE, CEA and Univ. Geneva.  I have involved in various topic including: (i) characterization of environmental fate and distribution of natural and manufactured nanomaterials; (ii) mechanistic understanding of biomolecule/nanoparticles interaction; (iii) (eco)toxicology impact of nanoscale pollutants at molecular, cellular and organism scale.

Most recently, I focus on the bioavailability and molecular ecotoxicology of nanoparticles including nanoplastics to aquatic invertebrates with the aim of proposing AOP for freshwater gastropods. So consequently, in this Emerging Investigator Series we summarise and meta-analyse the published data regarding the metallic nanoparticle’s transformation in freshwater and toxicological effects in invertebrates. We come up with an overview highlighting the currently research gaps and subsequently, the recommendations for future researches.

What aspect of your work are you most excited about at the moment?

I am particularly interested in applying multidisciplinary bio-analytic approaches that combine biology, toxicology, physical-chemistry, biophysics and crystal-chemistry to better understand and explore the nature of material/living interactions.

In your opinion, what are the most important questions to be asked/answered in this field of research?

We need to observe and understand whether lower doses, given within realistic environmental concentration or sub lethal dose of nanoparticles, affect the biochemical processes of aquatic organisms, and we particularly focus on simulating whether they develop early stress or not, and if yes, how.

What do you find most challenging about your research?

Nanomaterials are extremely sensitive to the surrounding environment. The most challenging and exciting aspect is to work on long-term and low-dose realistic environmental exposure scenarios to nanomaterials. It is also highly critical to figure out the key factors affecting the nanomaterials transformation in biofluids.

In which upcoming conferences or events may our readers meet you?

I will attend the SETAC Europe 32nd Annual Meeting. I am planning to attend the International Conference on the Environmental Effects of Nanoparticles and Nanomaterials.

How do you spend your spare time?

I enjoy reading and outdoor activities like hiking and diving.

Which profession would you choose if you were not a scientist?

Diving instructor in tropical waters.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Follow the topic that you find most curious about, and then let this curiosity inspire your choice of studies and research.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series: Yuxiong Huang

Yuxiong Huang is an Associate Professor of environmental science and technology at Shenzhen International Graduate School, Tsinghua University. Dr. Huang is an interdisciplinary environmental scientist, with expertise in pollution control and environmental fate and transport, exposure and risk assessment. He received a B.S. degree in 2011 from the Department of Chemical Engineering, Tsinghua University; and Ph.D. degree in 2015 from Bren School of Environmental Science and Management, University of California, Santa Barbara. Before joining Tsinghua University, he was an associate specialist at the University of California’s Center for Environmental Implications of Nanotechnology. Dr. Huang currently leads a research group focusing on sustainable nanotechnology, addressing both the applications and implications of engineered nanomaterials.

Read Yuxiong’s Emerging Investigator Series article “Emerging investigator series: Hetero-phase junction 1T/2H-MoS2 nanosheets decorated by FeOOH nanoparticles for enhanced visible light photo-Fenton degradation of antibiotic” and read more about him in the interview below:

Your recent Emerging Investigator Series paper focuses on Hetero-phase junction 1T/2H-MoS2 nanosheets decorated by FeOOH nanoparticles for enhanced visible light photo-Fenton degradation of antibiotic. How has your research evolved from your first article to this most recent article?

I’ve been working on environmental nanotechnology since 2011. My first article was to develop magnetic nanoparticle adsorbents to effectively remove emerging contaminants, published in 2012. After that, I rationally designed a series of novel magnetic-core composite nanoparticle sorbents for organic and metal contaminants remediation in aquatic systems. Recently, our group worked on photocatalysis-based advanced oxidation processes using solar energy to efficiently degrade the persistent organic pollutant, including per- and polyfluoroalkyl substances (Environ. Sci.: Nano, 2020, 7 (8), 2229–2239, etc.). And the present work, we have constructed a hetero-phase junction with metallic 1T and semiconductive 2H MoS2 for antibiotic contaminant photo-Fenton catalytic degradation. Our research is always driven by the urgent technical demand for the effective control of emerging contaminants, and we always follow a rational design pattern to provide “nano” solutions.

What aspect of your work are you most excited about at the moment?

We have a great team working together on Environmental Nanotechnology at Shenzhen International Graduate School, Tsinghua University. It’s joyful and inspiring to grow up with our next generation of young environmental scientists.

In your opinion, what are the most important questions to be asked/answered in this field of research?

While many different nanomaterials-based solutions have been reported for environmental remediation, most of them stunk at the benchmark scale. How to apply the engineering nanomaterials for wastewater treatment in a pilot or full-scale plant? It’s a critical question to be answered.

What do you find most challenging about your research?

The most challenging part of our research is how to upgrade the batch study into a continuous reaction, for example, the reactor design. We have made some progress on it so far.

In which upcoming conferences or events may our readers meet you?

We will attend the ACS Meeting and Sustainable Nanotechnology Conference.

How do you spend your spare time?

I love hiking and snowboarding.

Which profession would you choose if you were not a scientist?

Probably Chemical Engineer.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Do good time management, particularly a good balance between research, teaching, public service and life.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Read our collection of papers on UN SDG 6: Clean water & sanitation

Urgent action is needed to combat the climate emergency and associated impacts – and across the world, our community are collaborating to address UN Sustainable Development Goals (SDGs).

We have put together a collection of leading content on clean water and sanitation from across our energy and environmental science journals. This diverse collection features work on wastewater treatment and disinfection, water resource recovery and monitoring water quality – vital technologies that will help us to improve access to sustainable water for all and address SDG 6.

Read on to discover this exciting collection, featuring:

Opportunities for nanotechnology to enhance electrochemical treatment of pollutants in potable water and industrial wastewater – a perspective by Paul Westerhoff et al.

The potential contribution of urine source separation to the SDG agenda – a review of the progress so far and future development options by Tove A. Larsen et al.

A case study on tap water quality in large buildings recommissioned after extended closure due to the COVID-19 pandemic by Maryam Salehi et al.

A flexible copper sulfide composite membrane with tunable plasmonic resonance absorption for near-infrared light-driven seawater desalination by Zhenmin Xu, Shiping Yang, Zhenfeng Bian et al.

Join us in tackling the climate crisis and contribute to our cross-journal collection showcasing research advancing UN SDGs

The principles of the UN SDGs align closely with our own – to help the chemical science community make the world a better place. So that we can achieve this, we are curating a cross-journal collection across our energy and environmental science journals.

This collection will cover studies which advance our understanding of the climate situation, and present new technologies & innovations to combat climate change – inclusive of environmental engineering, materials science, energy science disciplines and beyond.

We invite you to publish your next paper in this collection – quote ‘XXSDG0622’ when submitting your manuscript. You can put your trust in both our rigorous peer review process and fast times to publication – which are less than 9 weeks after submission across all our journals.

If you have some exciting results to publish on these topics, we would be delighted to hear from you – we are also very happy to guide you on which RSC journal would be the most appropriate for your paper.

Submit your manuscript to the collection

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series: Ming Xu

Ming Xu received his B.S. and Ph.D. degree from Xiamen University in 2006 and 2011. In 2011-2013, he was a postdoc at l’Équipe de Chimie Analytique Bio-inorganique (LCABIE), Centre national de la recherche scientifique (CNRS) in France. In 2014, he joined the Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences (CAS), and became a professor since 2021. His main research interests are the health risks and toxicological mechanisms of heavy metals / nanoparticles. He has (co)authored around 50 peer-reviewed papers.

Read Ming’s Emerging Investigator Series article “Emerging investigator series: Enhanced peroxidase-like activity and improved antibacterial performance of palladium nanosheet by alginate-corona” and read more about him in the interview below:

Your recent Emerging Investigator Series paper focuses on “how ecological macromolecules affect the physicochemical properties and biological effects of engineered nanomaterials”. How has your research evolved from your first article to this most recent article?

In 2010, I published the first article about the ecological risk of engineered nanomaterials, focusing on the cytotoxicity of CdTe-based nanoparticles on a diatom, Phaeodactylum tricornutum, during my PhD under the supervision of Prof. Qiuquan Wang in Xiamen University. Since then, I have spent many years working on the mechanism of nano-bio interface interactions and nanomaterials’ biological effects. Macromolecular corona, as we know it now, may change the original identify of nanoparticle and modify its fate in an environmental or biological scenario. However, I note that there were only a few studies focusing on the possible influence of ecological macromolecules on the antibacterial performance of nanomaterials, rarely elaborating the underlying mechanism. It is of interest that our preliminary data showed alginate could significantly enhance the peroxidase-like activity of Pd nanosheet. So, in this Emerging Investigator Series paper, we present why alginate affect the intrinsic enzyme mimetic activity of Pd nanosheet and what’s the underlying mechanism of its antibacterial activity.

What aspect of your work are you most excited about at the moment?

Currently, I’m most excited that we have made some preliminary progress in tracing the biological fate of nanoparticles in vivo, and it’s very important for the understanding the benefits or risks of nanomaterials on environmental and health aspects.

In your opinion, what are the most important questions to be asked/answered in this field of research?

To provide scientific basis for better use of nanomaterials in environmental and health issues, it’s important to answer how nanomaterials interact with cells at the nano-bio interface and transform within cells, what’s the primary molecular target and underlying regulation pathway of nano-bio effects, and whether nanomaterials will lead to ecotoxicological and health risks. I think there remain many knowledge gaps that are necessary to be filled in the future.

What do you find most challenging about your research?

Development of specialized nanomaterials and in situ techniques for the analysis of nano-bio interactions from molecular to nanoscale level.

In which upcoming conferences or events may our readers meet you?

I plan to attend the 11th National Conference on Environmental Chemistry in China this year, and 8th International Symposium on Metallomics in 2022.

How do you spend your spare time?

I spent most of my spare time with my family in recent years. When have free time, I’m fond of reading, hiking, running, as well as visiting places of historic interest.

Which profession would you choose if you were not a scientist?

I guess I would be a science fiction writer. In my childhood, I enjoyed very much reading science fiction books and magazines. Now when there’s free time, I still like to watch movies and novels on this subject.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Never stop learning, and never stop failing.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New Advisory Board members for ES Nano

The Environmental Science: Nano team is very pleased to welcome two new researchers to our Advisory Board!


Dr Sara E. Mason

Dr. Sara E. Mason is an associate professor and the director of graduate studies in the Department of Chemistry at the University of Iowa, where she began her independent career in 2010. She leads a research group that uses theory and modeling to advance the molecular-level understanding of nanomaterials in the environment or under operational conditions. Dr Mason was previously one of ES:Nano’s Emerging Investigators.

Read Dr Mason’s most recent ES:Nano paper here.

 

 


Dr Giannis Mpourmpakis (Ioannis Bourmpakis)

Dr. Giannis Mpourmpakis is the Bicentennial Alumni Faculty Fellow, Associate Professor of Chemical Engineering at the University of Pittsburgh (USA) and a Guest Professor in the Department of Physics at Chalmers University of Technology (Sweden). He received his PhD from the Chemistry Department, at the University of Crete (Greece) and he was a Marie-Curie fellow and Senior Researcher in the Chemical Engineering Department, at the University of Delaware (USA). His research focuses on the first-principles-based multiscale modeling of nanomaterials for energy and environmental applications. He has received several awards, such as the National Science Foundation CAREER award (2017) and the 2019 Bodossaki Foundation Distinguished Young Scientist Prize. He has been highlighted as “Emerging Investigator” by the ACS Journal of Chemical & Engineering Data (2018) and as an emerging scholar in “Futures” by AIChE (2020). For his contributions to education, Prof. Mpourmpakis was awarded the 2016 James Pommersheim Award for Excellence in Teaching in Chemical Engineering by the University of Pittsburgh. He has been serving as the President of the Pittsburgh-Cleveland Catalysis Society and he has organized several scientific sessions at national and international meetings (AIChE, ACS, NACS, etc).


Please join us in warmly welcoming both Sarah and Ioannis to our Advisory Board!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series: Lingxiangyu Li

Professor Lingxiangyu Li is currently an associate professor in the School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences. He received his Ph.D. degree from the Technical University of Munich, Germany in 2013. His research focuses on analytical, fate, and health risk of emerging pollutants particularly nanomaterials in the environment toward nanosafety assessment.

Read Lingxiangyu ’s Emerging Investigator Series article “Emerging investigator series: Chemical transformation of silver and zinc oxide nanoparticles in the simulated human tear fluids: Influence of biocorona” and read more about him in the interview below:

Your recent Emerging Investigator Series paper focuses on Chemical transformation of silver and zinc oxide nanoparticles in the simulated human tear fluids: Influence of biocorona. How has your research evolved from your first article to this most recent article?

Since I began doing PhD study in Germany 11 years ago, I did research on fate, transfromation and environmental risks of engineered nanomaterials. In other words, findings from the first article to this paper all belong to my research interest that fate, transformation and environmental risks of nanomaterials.

What aspect of your work are you most excited about at the moment?

Definitely, the analytical method development for showing the real concentrations of engineered nanomaterials like Ag-NPs through wastewater treatment plants to environmental water was one of my best work, which makes me very excited. Since I develop robust methods and then applied this method to illustrate environmental issues.

In your opinion, what are the most important questions to be asked/answered in this field of research?

First, what is the real concentration of engineered nanomaterials in the environment. Second, are nanoparticles at environmetally revelant concentrations a threat to organisms including human?

What do you find most challenging about your research?

The most challenging issue is speciation analysis of nanomaterials in the environmental and biological matrices.

In which upcoming conferences or events may our readers meet you?

The 11st National Conference on Environmental Chemistry in city of Harbin in December 2021

How do you spend your spare time?

Playing Football and reading history books.

Which profession would you choose if you were not a scientist?

Being a Military Journalist was my dream during my child period.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Do more thinking by yourself, and do more discussion with others.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ES: Nano in the media – Research published by Nirupam Aich

Research published by Nirupam Aich in Environmental Science: Nano, alongside co-authors Arvid Masud and Chi Zhou, has been featured in several news outlets. The researchers based at University at Buffalo, USA report a direct ink writing 3D printing technique and freeze-drying to make graphene-biopolymer aerogels for water treatment.

Read the full paper:

Emerging investigator series: 3D printed graphene-biopolymer aerogels for water contaminant removal: a proof of concept

Arvid Masud, Chi Zhou and Nirupam Aich*
Environ. Sci.: Nano, 2021,8, 399-414

Read more about their work here: 

Finally, 3D-printed graphene aerogels for water treatment

https://phys.org/news/2021-04-3d-printed-graphene-aerogels-treatment.html 

New Graphene 3D Printing Technique Makes Feasible Water Filters

https://www.sciencetimes.com/articles/30683/20210415/new-graphene-3d-printing-technique-makes-feasible-water-filters.htm 

How 3D printed Graphene Aerogels can be used for Water Treatment

https://www.azonano.com/news.aspx?newsID=37901

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series: Alexander Gundlach-Graham

Alexander Gundlach-Graham obtained his Ph.D. in 2013 from Indiana University under the supervision of Prof. Gary Hieftje. His Ph.D. research focused on the development of distance-of-flight mass spectrometry. In 2014, Alex joined the group of Prof. Detlef Günther at ETH Zurich as a Marie Curie Postdoctoral Scholar. At ETH, his research centered on the combination of laser ablation with inductively coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) for high-resolution elemental imaging and on the detection of engineered nanoparticles by single-particle ICP-TOFMS. Since 2019 he has been an Assistant Professor at IOWA State University, where his research now focuses on the development and application of atomic mass spectrometry (MS) to address current measurement challenges in environmental and bioanalytical sciences.

Read Alexander’s Emerging Investigator Series article “Emerging investigator series: automated single-nanoparticle quantification and classification: a holistic study of particles into and out of wastewater treatment plants in Switzerland” (Open Access) and read more about him in the interview below:

Your recent Emerging Investigator Series paper focuses on automated single-nanoparticle quantification and classification. How has your research evolved from your first article to this most recent article?

I’ve been doing research in mass spectrometry for a while now, but the focus of my research has shifted quite a bit.  My Ph.D. research, which was in the group of Gary Hieftje at Indiana University, focused on the design, construction, and demonstration of a distance-of-flight mass spectrometer.  This was an instrumentation-heavy research project, and I really benefited from learning—at a basic level—operation principles of mass spectrometry instruments.  In my post-doc, which was at the ETH Zürich in the group of Detlef Günther, I began working on inductively coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) for laser-ablation imaging applications.  Now, I continue to work with ICP-TOFMS, but I focus more on single- (nano)particle characterization.  A common theme in my research has been the use of atomic mass spectrometry to develop new measurement strategies.

What aspect of your work are you most excited about at the moment?

I am excited about how we continue to improve our understanding of the single-particle measurements and about our work toward developing robust solutions for the high-throughput analysis of diverse nanoparticles.  I hope that our methods will be adopted by members of the growing single-particle ICP-TOFMS research community.  I am excited about sharing our research and seeing where it goes as more minds get involved.  I think sp-ICP-TOFMS will be a key approach going forward as we, and other researchers, continue to expand our understandings of the presence and fate of anthropogenic and natural nanomaterials in the environment.

In your opinion, what are the most important questions to be asked/answered in this field of research?

Even with the development of sp-ICP-TOFMS, the quantification of anthropogenic nanomaterials in particle-rich environmental samples remains a challenge.  From an analytical perspective, I think that this measurement challenge needs to be resolved in order to build robust and accurate models of the fate and transport of anthropogenic particles in the environment.  This is essential for any monitoring of nano-pollution.  The major challenges here are mass-based detection limits and dynamic range, we still do not have an approach that can measure very small (<10 nm) nanoparticles while also quantifying these nanomaterials across large number concentrations (~100-107 particle/mL) and against particle backgrounds.

What do you find most challenging about your research?

Our biggest challenge is data interpretation.  We have now developed robust ways to find and quantify elements in nanoparticles; however, our tools for interpreting this data are at an early stage.  We put a lot of effort in developing approaches to streamline and improve classification of nanoparticle types.

In which upcoming conferences or events may our readers meet you?

I hope that we are able to start attending conferences in person soon; I’m looking forward to meeting colleagues and engaging in impromptu discussions once again.  My conference schedule is still tentative, but I plan to attend the ICEENN conference in Montreal in August, SciX in Rhode Island in September and Winter Plasma Conference in Florida in January of 2022.

How do you spend your spare time?

Pretty much all of my non-working moments are spent with my family.  My partner, Abi, and I have two children: 6 and 4 years old.  Like many families, we’ve spent a lot of time together in the last year.  We like to go on walks, read books, and cook.

Which profession would you choose if you were not a scientist?

I would be a baker.  Cooking is one of my hobbies, though I don’t spend as much time or creative energy on it as I would sometimes like.  I don’t make all of my family’s day-to-day bread, but I do a variety of baking: from pizzas, to Swiss “Butterzopf” on the weekends, to (occasionally) sour-dough rye.

Can you share one piece of career-related advice or wisdom with other early career scientists?

My advice to early career scientists would be to trust in their own intuition and explore research areas that are inherently fascinating to them.  Research usually involves a mixture of failures and successes; curiosity-driven research makes navigating the downtimes in research more manageable and the fruitful times more satisfying.  “Listening” to your own scientific interests will help you develop specific scientific expertise that allows you to tackle science questions/problems from unique, innovative, perspectives.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Latest HOT, Review and Open Access content from Environmental Science: Nano

We are delighted to share with you a hand-picked selection of papers recently published in Environmental Science: Nano.

HOT papers – as recommended by our Editors & Reviewers

Polystyrene nano- and microplastic accumulation at Arabidopsis and wheat root cap cells, but no evidence for uptake into roots
Stephen E. Taylor et al

Natural organic matter facilitates formation and microbial methylation of mercury selenide nanoparticles
Qing Chang et al

Carbon-based ionic liquid gels: alternative adsorbents for pharmaceutically active compounds in wastewater
Carla Rizzo et al

Read more HOT papers at rsc.li/esnano-hot

Reviews – timely overviews of key topics in environmental nanoscience

Metal nanoparticles in the air: state of the art and future perspectives
Anna Rabajczyk et al

Doing nano-enabled water treatment right: sustainability considerations from design and research through development and implementation
M. Falinski et al

Perspectives on palladium-based nanomaterials: green synthesis, ecotoxicity, and risk assessment
Songhao Luo et al

Read more Reviews at rsc.li/esnano-reviews

Open Access – read for free!

Environmental and health risks of nanorobots: an early review
Rickard Arvidsson and Steffen Foss Hansen

Fluorescent plastic nanoparticles to track their interaction and fate in physiological environments
Jessica Caldwell et al

Environmental context determines the impact of titanium oxide and silver nanoparticles on the functioning of intertidal microalgal biofilms
Claire Passarelli et al

Read more Open Access content at rsc.li/esnano-oa

**************************************************

We hope you enjoy reading these papers, and we welcome your future submissions to the journal.

With best wishes,

Peter & Neil

Peter Vikesland Neil Scriven
Editor-in-Chief Executive Editor
Environmental Science: Nano Environmental Science: Nano
Virginia Tech, USA Royal Society of Chemistry

Submit to Environmental Science: Nano

About Environmental Science: Nano
Led by Editor-in-Chief Peter Vikesland (Virginia Tech), Environmental Science: Nano is the premier journal dedicated to nano aspects of environmental science and sustainability. The journal has an Impact Factor of 7.638* and is published on a not-for-profit basis by the Royal Society of Chemistry; as a learned society and professional body, the RSC is committed to supporting the global scientific community by re-investing all surplus into charitable activities such as education, outreach, and science policy. More details about the journal and our scope can be found on our website: rsc.li/esnano

Sign up for alerts     Latest Issue     Emerging Investigators      Themed Collections

 

 

 

 

Meet the team

 

* 2019 Journal Citation Reports (Clarivate Analytics, 2020)

****************

Find out more about the advantages of publishing in a Royal Society of Chemistry journal including our Open Access options

 Environmental Science: Nano is complemented by our sister journals, Environmental Science: Water Research & Technology, Environmental Science: Processes & Impacts and Environmental Science: Atmospheres; find out more about the these journals at rsc.li/envsci

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigators – the latest work from rising stars in Environmental Science

We are delighted to share with you a selection of high-impact papers by Emerging Investigators in the field of environmental science and engineering. These papers, published across Environmental Science: Processes & Impacts, Environmental Science: Nano, and Environmental Science: Water Research & Technology, showcase the breadth of exciting research being conducted by rising stars in our field.

The latest work from rising stars of environmental science

Emerging investigator series: bacteriophages as nano engineering tools for quality monitoring and pathogen detection in water and wastewater
Zeinab Hosseinidoust et al

Emerging investigator series: carbon electrodes are effective for the detection and reduction of hexavalent chromium in water
Noémie Elgrishi et al [OPEN ACCESS]

Emerging investigator series: quantifying silver nanoparticle aggregation kinetics in real-time using particle impact voltammetry coupled with UV-vis spectroscopy
Kathryn R. Riley et al

Emerging investigator series: air conditioning filters as a sampler for semi-volatile organic compounds in indoor and near-building air
Lisa Melymuk et al

Emerging investigator series: activated sludge upon antibiotic shock loading: mechanistic description of functional stability and microbial community dynamics
Seungdae Oh and Donggeon Choi

Emerging investigator series: heterogeneous OH oxidation of primary brown carbon aerosol: effects of relative humidity and volatility
Elijah G. Schnitzler et al

Emerging investigator series: onsite recycling of saline–alkaline soil washing water by forward osmosis: techno-economic evaluation and implication
Wenhai Luo et al

Emerging investigator series: molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles
Juan Pablo Giraldo et al

****************************************************************************

The RSC’s Emerging Investigator Series provides a unique platform for early-career environmental scientists & engineers to showcase their best work to a broad audience. Contact us to apply for consideration in this Series. To be eligible, you will need to have completed your PhD (or equivalent degree) within the last 10 years†, have an independent career and appear as corresponding author on the manuscript.

Across the journals, the Emerging Investigator Series is curated by our Series Editors; David Cwiertny, Long Nghiem, Ligy Philip, Delphine Farmer, Lenny Winkel, Guang-Guo Ying and Peter Vikesland.

Read more of our Emerging Investigator Series papers using the links below.

Environmental Science: Processes & Impacts Emerging Investigator Series

Environmental Science: Nano Emerging Investigator Series

Environmental Science: Water Research & Technology Emerging Investigator Series

Also, read the latest interviews with our Emerging Investigators to find out more about their work and the important research challenges that they are tackling.

We hope you enjoy reading these papers from future leaders in the field of environmental science.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)