Dr. Kathryn Riley is an Assistant Professor in the Department of Chemistry and Biochemistry at Swarthmore College. She received her Ph.D. from Wake Forest University in 2014 and was a National Research Council (NRC) postdoctoral fellow at the National Institute of Standards and Technology (NIST) from 2015 to 2016. Before her current appointment, she was a Consortium for Faculty Diversity (CFD) postdoctoral fellow at Swarthmore from 2016-2018. Dr. Riley’s research involves the development of analytical techniques for the characterization of nanomaterials and their dynamic physical and chemical transformations in biological and environmental matrices. Her research group specifically aims to broaden participation in the field by developing techniques that provide new quantitative insights in less time and at a reduced cost when compared to more commonly employed methods. Projects in her group span the analysis of silver nanomaterials, including their dissolution, aggregation, formation of bio-coronas, and release from commercial products. To learn more about Dr. Riley’s research, visit her lab website or follow her on Twitter.
Read Kathryn Riley’s Emerging Investigator Series article “Emerging investigator series: Quantifying silver nanoparticle aggregation kinetics in real-time using particle impact voltammetry coupled with UV-vis spectroscopy” and read more about her in the interview below:
Your recent Emerging Investigator Series paper focuses on Quantifying silver nanoparticle aggregation kinetics in real-time using particle impact voltammetry coupled with UV-vis spectroscopy. How has your research evolved from your first article to this most recent article?
My interest in nanomaterials began while I was in graduate school. At the time, I was developing capillary electrophoresis (CE)-based methods for screening DNA aptamer libraries against clinically relevant protein targets and using next generation sequencing (NGS) for identification of candidate aptamers. To support some research questions of our collaborators, I ended up developing CE separation methods for sub-micron and micron-sized plastic particles. I found the work of developing analytical tools to study particles to be incredibly interesting, so I knew that I wanted to dive deeper into the field of nanotechnology during my postdoc at NIST. There, I continued my work applying the separation principles of CE to gain new insights about nanomaterials. Over the past several years, my work with undergraduate students at Swarthmore has sought to add to our analytical toolkit by developing electrochemical methods to probe the reactivity of metal and metal oxide nanomaterials. Looking ahead, we are excited to start applying these tools to increasingly complex nanomaterial chemistries and contribute new insights to the field.
What aspect of your work are you most excited about at the moment?
Of our current projects, there are two that I’m particularly excited about at the moment. The first builds on the electrochemical techniques we have developed in our lab over the past two years to enable in situ quantification of dissolved and nanoparticulate silver released from textiles. Due to the fast time resolution of the measurement, this technique would allow researchers to quantify release kinetics of the two silver forms simultaneously and without the need for sample preparation. The second project involves evaluation of the silver nanoparticle metabolite corona using a model environmental bacterium. Both of these projects allow us to push our instrumental techniques towards analysis of more complex systems, which is challenging, but exciting.
In your opinion, what are the most important questions to be asked/answered in this field of research?
There are so many! I think one of the biggest challenges is the wide parameter space to be analyzed, including variations in the physicochemical properties of the nanomaterial, changes in its properties as it encounters diverse water, soil, air, and/or biological chemistries, and the varied responses of the environment to the nanomaterial. There are many excellent small-scale benchtop studies and large-scale mesocosm studies, but with so many parameters to explore, what does it all mean and how can we use the rich information gathered from both types of data to predict the behavior of new or unexplored materials?
What do you find most challenging about your research?
Most often the aspects of my work that I find most exciting are also those that are the most challenging. Our lab has spent a lot of time analyzing silver nanomaterials, which can simultaneously dissolve, aggregate, and form bio- and eco-coronas (and form oxides, sulfides, and insoluble chlorides). This complexity presents a significant analytical challenge for our lab and others – how do you ever isolate and study just one of these processes?! Fortunately, as an analytical chemist, these are precisely the challenges that I am most eager to help the community overcome.
In which upcoming conferences or events may our readers meet you?
Whether virtually or in-person, I plan to attend the Sustainable Nanotechnology Organization (SNO) conference in October 2020 and the Environmental Nanotechnology Gordon Research Conference (GRC) in June of 2021.
How do you spend your spare time?
As an alumna of Swarthmore and a former student-athlete, I enjoy spending my free time supporting our athletics teams. I volunteer my weekends to help coach our varsity softball team. In the summer, you can find me tending to my vegetable garden or playing in slow pitch softball leagues.
Which profession would you choose if you were not a scientist?
I think I would be an architect or interior designer – I used to spend hours as a child designing homes on graph paper and even when I had the chance to reconfigure my laboratory space at Swarthmore, I pulled out my iPad and drafted a to-scale design of every inch of that space. The builders must have thought I was crazy (if not for that then for overseeing the “building site” on an almost daily basis), but they literally made my lab design come to life!
Can you share one piece of career-related advice or wisdom with other early career scientists?
I have had the great fortune of having fantastic mentors throughout my trajectory – some who are in my field, some who are not – some who look like me, some who do not. The single most important characteristic that they’ve all had in common is their ability to be solution oriented as I’ve faced challenges in my career, even as those solutions sometimes pushed me outside of my comfort zone. The deep, mutual respect we built in our mentoring relationship allowed for them to give and for me to receive this advice, and I have become a better leader and mentor to my students because of it. Find mentors like those!