Author Archive

On the importance of considering all reaction partners: a lesson from birnessite-induced BPA oxidation

Bisphenol A (BPA) is one of the most used industrial chemicals worldwide. Since its introduction in the market in 1959, BPA production has increased steadily and it is forecasted to reach 7.3 million tons by the end of 2023.1 BPA is used for a range of applications: from dental sealants to internal can coatings, electronic equipment and supermarket receipts.2 “In the past years, concerns have been raised over the use of this compound due to its estrogenic effects that can be observed also at low BPA concentration, such as the ones found in the natural environment.2,3 Thus, investigation of natural attenuation processes might help us developing strategies to reduce human exposure to this widespread chemical.

Several literature studies showed that manganese oxides (MnOx)-mediated oxidation represents the main PBA degradation pathway in anoxic conditions.2 This process produces a series of degradation products, including radicals that might couple to dissolved organic matter to form the so-called “bound residues”, unknown high molecular weight products whose long-term environmental risks are still debated.4 A detailed knowledge of the reaction mechanism will therefore allow to predict, and ideally prevent, the formation of degradation products that might be more hazardous than the parent compound.

In this context, Balgooyen et al. used stirred flow reactors to investigate the effect of influent concentrations on BPA degradation mechanism via birnessite (δ-MnO2) oxidation. This research question was motivated by the hypothesis that higher influent concentrations might lead to a higher formation of bound residues. The results of this work are directly relevant for engineered water treatment systems that use MnOx-coated sand,5 where contaminant inflow concentrations might change during time.

As a unique feature of this work, the authors used a combined approach based on the detection of both organic and inorganic reaction products. Specifically, they followed the formation of both hydroxycumil alcohol (HCA) and aqueous Mn(II). HCA is the main PBA oxidation product and is considered a proxy for bound residues formation, while Mn(II) is a reaction byproduct released in solution upon reduction of birnessite.

Unexpectedly, the two approaches gave opposite results: HCA yields were constant for the influent concentration range investigated, while Mn(II) yields decreased as the influent concentration increased. In order to explain their results, the authors hypothesized that Mn(II) was not an accurate proxy, as comproportionation and disproportionation reactions occurring at the mineral surface might alter aqueous Mn(II) concentrations. Using an elegant series of sorption and desorption experiments, Balgooyen et al. were able to confirm this hypothesis, leading to the conclusion that BPA oxidation mechanism in stirred-flow reactors is indeed independent from the influent concentration.

In addition to providing a valuable new piece of information for the complex puzzle of BPA cycling in anoxic conditions, the work of Balgooyen et al. teaches us something that has little to do with micropollutants or flow-through reactors: for a throughout study of a chemical mechanism, all reaction partners must be considered – no matter how many different analytical techniques you will have to use.

To download the full article for free*, click the link below:

Impact of bisphenol A influent concentration and reaction time on MnO2 transformation in a stirred flow reactor

Sarah Balgooyen, Gabrielle Campagnola, Christina K. Remucal and Matthew Ginder-Vogel

Environ. Sci.: Processes Impacts, 2019, 21, 19

DOI: 10.1039/c8em00451j


About the Webwriter:

Rachele Ossola is a PhD student in the Environmental Chemistry group at ETH Zurich. Her research focuses on photochemistry of dissolved organic matter in the natural environment.

 

 

 


Additional references

(1)        The Global Bisphenol A Market, https://www.researchandmarkets.com/reports/4665281/the-global-bisphenol-a-market (accessed May 26, 2019).

(2)        Im and Löffler, Environ. Sci. Technol. 2016, 50 (16), 8403–8416.

(3)        vom Saal and Hughes, Environ. Health Perspect. 2005, 113 (8), 926–933.

(4)        Barraclough et al. Environ. Pollut. 2005, 133 (1), 85–90.

(5)        Charbonnet et al., Environ. Sci. Technol. 2018, 52 (18), 10728–10736.

 

*Article free to access until the 30th June 2019

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series – Karen Dannemiller

Karen C. Dannemiller, PhD is an Assistant Professor at Ohio State University with a joint appointment in Civil, Environmental, and Geodetic Engineering and Environmental Health Sciences. She also has a courtesy appointment in Microbiology. At Ohio State, she leads the Indoor Environmental Quality (IEQ) (https://ieq.engineering.osu.edu/) group and studies the indoor microbiome and indoor chemical exposures. In 2017, she was awarded the Denman Distinguished Research Mentor Award.

Prior to her current position, Dr. Dannemiller graduated with honors in Chemical and Biochemical Engineering from Brown University and earned her MS, MPhil, and PhD at Yale University in Chemical and Environmental Engineering. During this time, she completed an internship at the California Department of Public Health in the Indoor Air Quality Program. She was also a Microbiology of the Built Environment Postdoctoral Associate at Yale University

Read Karen Dannemiller’s Emerging Investigator article “Degradation of phthalate esters in floor dust at elevated relative humidity” and find out more about her in the interview below:

Your recent Emerging Investigator Series paper focuses on the degradation of phthalate esters in floor dust at elevated relative humidity. How has your research evolved from your first article to this most recent article?

This paper has really allowed my work to come full circle.  My first research paper was on formaldehyde in the indoor environment, which was based on my work in the chemical engineering department at Brown University as an undergraduate.  During my PhD, I began to focus more on microbial exposures in the indoor environment.  This Emerging Investigator Series paper is so exciting because it combines my interest in both indoor chemistry and indoor microbiology by examining the interactions between these two systems.

What aspect of your work are you most excited about at the moment?

I direct the Indoor Environmental Quality Laboratory at Ohio State University, and I am excited about all the applications that we are discovering to which we can apply our research. It is so critical to understand the chemical and microbial processes occurring in the indoor environment, and this has important implications in many different systems.  These processes can be particularly important in influencing exposures of vulnerable populations, such as asthmatic children.  We also need a thorough understanding of chemical and microbial interactions in specialized, sensitive systems such as on the International Space Station.  I am most excited to have received grants from NIH, NASA, the Alfred P. Sloan Foundation, and other organizations to study these interactions.

In your opinion, what are the most important questions to be asked/answered in this field of research?

Right now, very little is known about the interactions between chemicals and microbes in the indoor environment.  There are a plethora of questions that need to be asked to gain even a basic understanding of what is happening around us on a daily basis.  These may have important implications for our health.

What do you find most challenging about your research?

One of the most challenging but also exciting aspects of my research are the unexpected surprises inherent in any scientific dataset, but especially rich microbial datasets.  Often, future grant proposals can result from novel associations discovered during data analysis.

In which upcoming conferences or events may our readers meet you?

The next conference I will attend will be AEESP in Tempe, AZ, May 14-16, 2019.  I am very excited to be giving the plenary talk on Thursday morning.

How do you spend your spare time?

I love spending time with my family.

Which profession would you choose if you were not a scientist?

If I were not a research scientist, I would be an environmental public health practitioner.  They apply scientific principles to help people reduce their harmful exposures.  I appreciate the hard, challenging work that they do everyday, especially in fields like mold remediation.

Can you share one piece of career-related advice or wisdom with other early career scientists?

I have been very lucky and very thankful to have some outstanding mentors throughout my career.  I would highly recommend that early career scientists find mentors to help them navigate different obstacles they may encounter.  Mentors are a great source of advice and inspiration.  They can also help you identify exciting opportunities

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Dr Michelle Scherer et al. Win SERDP 2018 Project of the Year Award for Environmental Restoration

Congratulations to Dr. Michelle Scherer and her research group for winning the SERDP 2018 Project of the Year award for Environmental Restoration for their project Biologically Mediated Abiotic Degradation of Chlorinated Ethenes: A New Conceptual Framework.

This research which was funded by SERDP was recently published in Environmental Science: Processes & Impacts Vol 20, issue 10, with the title  ‘Reduction of PCE and TCE by magnetite revisited‘ and featured as the outside front cover of the same issue.

 

Left picture: Dr Scherer and her team with the SERDP award, taken by Ben Zweig.  Right picture: ESPI front cover highlighting Dr Scherer et al.’s award winning work

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Passive samplers for indoor applications: a step closer to a broader use

Polychlorinated biphenyls (PBCs) are a wide class of compounds with numerous everyday applications such as electrical insulators, cooling fluids, plasticizers and flame retardants – just to name a few. However,  back in the 1970s evidence started accumulating on their environmental persistency and on their toxicity as human carcinogens. In 1978, PBCs production was terminated and an international ban followed their inclusion in the Stockholm convention of Persistent Organic Pollutants. Interestingly though, PBCs are still present in our houses and schools today. A recent study conducted in rural and urban schools in the US measured indoor PBCs concentrations one to two orders of magnitude higher than outdoor values.1 Another study measured PBCs in residential homes and found kitchen cabinets to act as an indoor source of these semivolatile compounds.2 Considering their adverse health effects and their widespread occurrence, non-invasive, easy-to-use and cheap detectors are needed to monitor indoor PBCs levels.

In this respect, passive samplers represent a valid alternative to conventional sampling techniques. They consist of a disc of polymeric material placed into a protective shell. After the sampler is deployed in the environment, semivolatile compounds diffuse into the chamber and get absorbed onto the polymer. After a certain exposure time, the passive sampler is withdrawn from the field, and the absorbed compounds are extracted and quantified. The “on-the-sampler” concentration (Csampler) is then used to obtain environmental exposure values.

 

However, using passive samplers in an accurate and reliable manner is challenging. One of the most critical but elusive parameters is the sampling rate (Rs), which represents the volume of air sampled per unit of time and is required to correctly convert Csampler into exposure data. In outdoor applications the sampling rate is commonly measured using a “depuration compound”, an isotopically-labelled version of the species of interest that is adsorbed onto the polymeric disc before deploying the sampler in the field. The sampling rate is simply estimated from the loss of the depuration compound. This technique is effective, but the toxicity of these reference molecules makes it unsuitable for indoor applications. Another possibility involves the calibration of the passive sampler before its use, but this approach is time consuming and requires the use of an additional independent sampling method (for instance, an active air sampler).

Alternatively, Rs can be estimated with mathematical models. These models have already been developed for outdoor applications and allow the estimation of Rs from the wind speed data. Starting from this point, Herkert and Hornbuckle in their most recent publication hypothesized that these same models, if adjusted appropriately, can provide Rs from the indoor airflow data. To test their ideas, they set out a two-phase study with the final aim of providing practical recommendations for an accurate use of passive samplers in indoor environments.

In the first phase, they measured the sampling rate of thirty-eight PBCs congeners in a school room using a combination of passive and active samplers, and compared the results with the modelled values. The predicted Rs values were obtained from the room-averaged wind speed, a parameter that can be easily measured with an anemometer. Their results showed that the difference between the empirical and the simulated values was on overall less than 25%, demonstrating that mathematical models represent a reasonably good method to access sampling rates.

In a second phase, they investigated how the position of the passive sampler within the room influenced the value of the sampling rate. They observed that location did matter, as different zones of the room experienced different air flow. Specifically, fluid dynamics simulation of a typical room showed that samples placed close to the walls (< 30 cm), the ceiling (< 30 cm), the air diffuser (< 50 cm) or placed on surfaces experience unrepresentative wind speeds, while open or closed doors seem to have a minimal effect. They thus concluded that Rs can be modelled accurately if the passive samplers are placed appropriately, opening up this technology for use in indoor settings.

To download the full article for free*, click the link below:

Effects of room airflow on accurate determination of PUF-PAS sampling rates in the indoor environment

Nicholas J. Herkert and Keri C. Hornbuckle

Environ. Sci.: Processes Impacts, 2018, 20, 757

DOI: 10.1039/c8em00082d


About the Webwriter:

Rachele Ossola is a PhD student in the Environmental Chemistry group at ETH Zurich. Her research focuses on photochemistry of dissolved organic matter in the natural environment.

 

 

 


References in article:

(1)        Marek et al., Environ. Sci. Technol. 2017, 51 (14), 7853–7860.

(2)        Herkert et al., Environ. Sci. Technol. 2018, 52 (9), 5154–5160.

*Article free to access until the 1st of January 2019

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)