Pieter Bots received their MSc in environmental geochemistry at Utrecht University in the Netherlands, and their PhD in environmental mineralogy from the University of Leeds. After this they moved to the University of Manchester for four years and two postdocs in actinide geochemistry. During this time, they worked on uranium and neptunium geochemistry in geological disposal scenarios. In 2016 Pieter joined the University of Strathclyde (in Glasgow, Scotland), on the Little Forrest Legacy Site (LFLS) immobilization project. On this project they worked on Sr and Cs geochemistry at legacy waste sites and how engineering materials impact on their speciation and mobility. Since November 2019, they are a Research Fellow and Co-I on the EPSRC funded NNUF facility: Plasma Accelerators for Nuclear Applications and Materials Analyses (PANAMA).
Read their Emerging Investigator Series article, ‘Emerging investigator series: a holistic approach to multicomponent EXAFS: Sr and Cs complexation in clayey soils’, here: https://doi.org/10.1039/D1EM00121C
Watch their video abstract below:
- Your recent Emerging Investigator Series paper focuses on EXAFS of Sr and Cs. How has your research evolved from your first article to this most recent article?
During my PhD my research focussed on the formation of calcium carbonate minerals in marine settings. During this time, I really learned the value of really thinking about the experimental design, but also about the analytical side of research, and that investing time in understanding the basics of the analytical techniques used in my projects has been incredibly valuable. I learned this through having to (re)develop ion chromatography methods for samples with high salinity for my first publication from my PhD. My PhD was also when I was first introduced to synchrotron radiation techniques. During my PhD, I mainly used small angle X-ray scattering techniques to investigate the formation and crystallization of calcium carbonate. Then when I joined the University of Manchester on a project on actinide (uranium and neptunium) geochemistry, I was introduced to contaminant mobility and X-ray absorption spectroscopy techniques. This was also the time that I realised that with XAS techniques, the data analysis is not always very straight forward, and that often you’ll have to think outside of the box in order to get the information you need (which is also true for other techniques, like SAXS and electron microscopy), specifically if the samples are complex and the XAS data represents multiple possible geochemical species. Because of this realisation, I have always tried to use the best, or developing and adjusting existing (data analyses) procedures to get the (geo)chemically most meaningful information. I used all this experience during my postdoc at the University of Strathclyde. For example, my experience in XAS analyses enabled me to get XAS beamtime awarded, at Diamond Light Source, on Sr and Cs geochemistry. Next, to get the most chemically meaningful information out of the XANES and EXAFS spectra I collected during the beamtime, I quickly realised I had to think outside the box again, which led to my publication in the Emerging Investigators series.
- What aspect of your work are you most excited about at the moment?
I am very happy that during my career so far I have always such an approach that values the analytical as well as the experimental side of research, including thinking outside of the box. At most places, this has been valued and given me the opportunity to collaborate many academics from different research fields like geoscience, chemistry, physics, environmental and even archaeology. This now means that my research plans are relatively broad; and have a wide range of research ideas in mineralogy and geochemistry which I am developing and writing up as research proposals. Hopefully I will be able to submit soon.
One of these proposals is on the mineralisation of phosphate biominerals through biomimicry and how different mechanisms of mineral formation impact on contaminant (U, Sr, Pb) mobility. At the moment, I am excited about collaboration (as Co-I) with a colleague at the University of Strathclyde; we have two RWM funded PhD students starting soon on the hydrothermal aging of cement, and how (we analyses for) the mineralogical and geochemical changes impact on the microstructural characteristics and the longevity of cement, how such materials will behave in geodisposal settings to keep radioactive wastes safe for generations to come.
- In your opinion, what are the most important questions to be asked/answered in this field of research?
There are two very important questions that I think are very important in my area of research. The first is that we really need to understand the dynamics and reversibility of mineralisation processes and the mobility and geochemistry of contaminants in the environment at a fundamental level in order to develop evidence-based engineering strategies based on mineralisation processes, for example, to deal with contaminated land or for waste water treatment. For example, many bioremediation strategies rely on biomineralisation. Much effort has been made into the microbiology side of biomineralisation, but the mineralisation process itself is still a so-called “black box”, even though the mechanisms of mineral formation impact the stability of the mineral phases, and the mechanisms of contaminant sequestration (including how stable or reversible is the sequestration). In my opinion, understanding such dynamic processes is essential in determining whether such biomineralisation processes can actually be utilised within environmental engineering strategies.
The second is that in most research to date, we tend to only investigate one or possibly two contaminants at the same time. While real wastes, waste water and contaminated environments, will almost never be dominated by a single (type of) contaminant. The behaviour and geochemistry of contaminants in such more complex environments can change drastically due to the presence of other contaminants and this is rarely simply the sum of the behaviour of the contaminants separately, so it is important to try and understand the geochemistry and speciation of such different contaminants and different types of contaminants (e.g. heavy metals, pharmaceuticals, microplastics, nanoparticles), and how their geochemistry and mobility changes in the presence of different contaminants, such as through competition for surface complexation sites, or potential mobilisation of heavy metals by microplastics.
- What do you find most challenging about your research?
What I find most challenging in research, but also most rewarding, is working with people. It can be frustrating when collaborators, supervisors or students are non-responsive or even dismissive or biased. But when the communication works well (especially after initial struggles), it is incredibly rewarding to see something beautiful come out of it, like a student getting better (or more surprising) results than expected, a research project that is successful, a mentee getting offered a postdoctoral position, or former supervisors or students saying that they can’t wait to collaborate more.
Scientifically, it is trying to make sure that whatever I do has environmental implications. We can never mimic nature in the lab 100% accurately, and there are many different variables in the environment that can impact on the process we’re trying to investigate. So we need to make sure that we design the experiments and analyses in such a way that we will actually investigate and analyse the processes we intend to investigate, that we’re able to understand/determine the variables that impact on these processes, and make sure that all of this is relevant to the processes in the environment or any environmental engineering strategy. Also, there are so many analytical techniques with specific requirement for the samples. For example, with EXAFS, the concentrations of specific elements needed for valuable information are generally at least one order of magnitude higher compared to environmentally relevant concentrations. So, we need to be careful generalising results at such elevated concentrations to draw overarching environmental conclusions (which is why I included experimental results on trace concentrations in my paper in the Emerging Investigator series).
- In which upcoming conferences or events may our readers meet you?
As a member of the Diversity, Equity and Inclusion committee of the European Association of Geochemistry, I am heavily involved in this year’s virtual Goldschmidt conference (4-9 July). For Goldschmidt, I am organising an early career workshop on “Hidden Histories – Towards Equity, Diversity and Inclusion in Geoscience” and the Diversity and Inclusion session. Outside of all the amazing science and DEI talks/sessions, I’ll be hanging around on Spatial Chat for socialising and networking opportunities, but also to be approachable as member of the DEI committee.
After this, I will present at the virtual XAFS2021 conference (11-13 July). Though, I’m not sure yet how present I can be for any of their social events as the conference will be held in the Eastern Australian time zone.
- How do you spend your spare time?
When I moved to Glasgow for my job at the University of Strathclyde, I wanted to make sure I met people that had no connection to my work. So I decided to get back into arts, and I joined a life drawing class in Glasgow. Since the pandemic, I have also been drawing outside of class more, for example during walks/hikes. For the rest, I enjoy sewing my own shoulder bags and face masks, and I enjoy playing games, both board games (with friends) and computer games.
- Which profession would you choose if you were not a scientist?
Besides the geo- and chemical sciences, the only thing I’ve always been interested in is the arts, both performing arts and visual arts (drawing/painting). When I was still at college, I was even thinking about going to theatre school, but I opted for earth sciences instead. So, if I were not a scientist, I’d probably be in the arts.
- Can you share one piece of career-related advice or wisdom with other early career scientists?
Advice is almost always given based on the advice givers’ own experiences and how they succeeded (and their impression that because they succeeded in that way, everybody should), this is specifically true for unsolicited advice. In my case, as a genderqueer and gay man, such advice usually involved advice on how I should not be myself / how I should change to “fit in” instead of how I should “shine” or “stand out” as myself. So trying to follow such advice actually was completely counterproductive, and even aggravated mental health issues. The only advice that I have been given and found truly helpful with whatever I was trying to achieve was to “just be myself” or variations of that advice.
So, based purely on my own experiences, my advice would be to not listen to advice that doesn’t make you smile or that doesn’t make you feel you can do it (because you can do it, and you’re perfect the way you are).
Finally, two small observations from having worked at several academic institutes and with many students, postdocs and academics. In research, you hardly ever get the results you want or expect, but you always get the results you deserve. With this I mean that if you pay attention to all the experimental results (specifically the results that make no sense), the input from your supervisors or collaborators, and try to understand what the data you produce actually mean, and then refine the experiments or the analytical approach, you will get a lot more out of the research and are a lot more likely you’ll discover something completely new. The second observation is that, often you can design an experiment or research program in a way that it will appear to prove your hypothesis (even if the hypothesis is wrong), because of this, what I think would be a much more interesting and useful approach is to try and disprove your hypothesis.