Archive for November, 2015

Charcoal from summer barbecuing to soil remediation?

Well, not quite. But in recent years researchers have been exploring the potential of using “biochar” to remediate soil contaminated with organic chemicals. Similar to but definitely not the charcoal commonly used during barbecue season, biochar is made by heating biomass such as fruit peels in oxygen-limited conditions. Its physical and chemical characteristics impart an exceptional ability to sorb chemicals, especially organic chemicals, and reduce their bioavailability in soil.

A new study by Xu and co-workers at Peking University and the Chinese Academy of Agricultural Sciences focuses on two widespread organic chemicals: bisphenol A (BPA) and 17α-ethylyneestradiol (EE2). BPA is used for manufacturing polycarbonate plastics and epoxy resins. Thus, it is found in a multitude of commonly used products such as cars, food storage containers, and electronic equipment. EE2 is a synthetic estrogen most commonly used as an ingredient in birth control pills.

Both of these chemicals have been found to be endocrine disrupters, and can be transported to soils via wastewater irrigation, sludge fertilizers and landfill leachates. As both chemicals are quite hydrophobic, Xu et al. hypothesized that biochar added to soil would significantly sorb BPA and EE2, and as a result would also affect leaching and dissipation of the chemicals.

The researchers tested this hypothesis by adding biochar derived from corn stalks to soil in a series of lab experiments. First, sorption studies involved adding biochar at a level of 4 wt% to soils spiked with 0.01 or 0.1 mg/L of both BPA and EE2, and measuring the amount of the chemicals in both the soil solids and the soil water after equilibrium was established in about 7 days.

They found that the soils containing biochar increased the solid-water distribution coefficients by at least 200% for BPA and EE2 respectively, relative to the soils with no biochar. Next, leaching experiments meant to simulate repeated rainfall events compared biochar-free soils to those with 1, 2 and 4 wt% of biochar, all of which were spiked with BPA and EE2 at levels reflective of environmentally contaminated soils. Biochar-amended soils decreased the amount of leached BPA by 19 to 53% and EE2 by 42 to 77%.

Biochar created by pyrolysis. Image: Wikipedia.org

A final set of incubation experiments used soils spiked in a similar manner to those used in the leaching experiments. All soils, including a biochar-free control, were left outdoors at ambient temperatures for three months. Portions of the soils were sampled at 1, 30 and 90 days, and analyzed for their total and bioavailable BPA and EE2 content. The results showed no significant effect on the dissipation of the two chemicals in soil, but large reductions in the bioavailable fractions of BPA and EE2 in soil.

In addition to holding much promise for removing various organic residues from soil, other benefits of biochar in soil include carbon sequestration, reducing greenhouse gas emissions, and improving crop production. The long-term stability of biochar in soil further highlights the multi-faceted potential of biochar as a soil amendment.



To read more about Xu and co-workers’ investigation into biochar’s ability to reduce the mobility of two widespread organic contaminants, download a copy of the full article for free*:

Influence of biochar on sorption, leaching and dissipation of bisphenol A and 17α-ethynylestradiol in soil
N Xu, B Zhang, G Tan, J Li and H Wang
Environ. Sci.: Processes Impacts, 2015, 17, 1722-1730
DOI: 10.1039/C5EM00190K

—————-

About the webwriter

Abha Parajulee is a Ph.D. student at the University of Toronto Scarborough. She is interested in water resources and the behavior of organic contaminants in urban environments.

—————-

* Access is free until 01/12/2016 through a registered RSC account.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

8th National Conference on Environmental Chemistry

The 8th National Conference on Environmental Chemistry (NCEC) was held in Guangzhou, China, 5th – 8th November 2015. The topic of this conference was Innovation and Development in Environmental Chemistry, based on the latest progress on the discipline.

The conference was a success with many events taking place during the conference, including environmental protection and analytical instrument exhibitions, academic posters, and graduate student symposiums.

Environmental Science: Processes & Impacts was proud to sponsor 5 oral prizes during this event. The winners were:

Haichao Wang (Peking University)
Simulation of NO3 free radicals in North China Plain and the research of measurement instrument

Aruo Nan (Guangzhou Medical University)
The functional and mechanism of non encoding RNA in nerve injury induced by environmental lead exposure

Rong Jin (Research Center for Eco-environmental Sciences, CAS)
The characteristics of polychlorinated naphthalenes generated in the process of waste derived fuel in cement kilns

Xiang Wu (Zhejiang University)
Speciation of tipical organic pollutants in soil

Fengzhen Zhang (South China University of Technology)
Study on degradation of organic pollutants in water by ozone catalytic zinc ferrite



The picture shows the winners of the Environmental Science: Processes & Impacts oral prizes during the 8th NCEC


Congratulations! The judges of the prize thought the quality of the presentations were really high and, from the Environmental Science: Processes & Impacts team, we would like to thank all the students that attended or presented at the meeting.

Many congratulations from the Environmental Science: Processes & Impacts team

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Tracking down europium

We have used nuclear energy for a while now. It is a clean form of energy, except for one little thing: what happens with radioactive waste? Scientists think the best solution is burying it deep in the ground and labelling it clearly enough so that future generations (or aliens!) will not dare to look inside. However, is this really the best solution? What happens with radioactive nuclei once they are inside the nuclear graveyard?

DOI C5EM00412H

Scientists need to study the interactions of radioactive elements with the environment that surrounds them in the ground. But using radioactive elements is tricky: they can be dangerous and unstable, and most of them tend to decay in a few seconds (minutes, if you are lucky). Hence, researchers have determined to use models that mimic the behaviour of elements such as americium, curium or plutonium. Right in the row above actinides we find lanthanides, which have very similar oxidation states and comportment.

Image from Wikipedia

Source: Wikipedia.org

Scientists dig into europium. Not only because of its stability, but also because of its high fluorescence. This makes europium easy to track down in the lab. Outside the lab, europium is also very useful: the European Central Bank (ECB) uses europium as a fluorescent marker to fight counterfeit banknotes. Rumour has it the ECB intended the euro pun when choosing this particular element.

A group of researchers in China have studied the interactions of europium with alumina and humic acid (HA). These two substances represented the average inorganic and organic components of soil. In previous studies, they investigated the effect of reaction time, pH or ionic strength. In this paper, recently published in Environmental Science: Processes & Impacts, researchers examined the influence of temperature in the interactions of europium. And temperature is important when it comes to radioactive wastes: nuclear debris can keep temperatures of up to 100ºC during at least 1000 years, due to exothermic radioactive effects such as decomposition.

Luckily, the results were quite positive. Apparently, at high temperatures the formation of very stable structures is favoured, and the sorption of europium in alumina and alumina/HA systems is slightly increased with temperature. Nonetheless, trivalent cations are not the only substances present in nuclear waste. The interactions between soil-like substances (like alumina or HA) and other type of nuclei remain to be studied in depth.


Click on the link below to read the full article for free*

Sequestration and speciation of Eu(III) on gamma alumina: role of temperature and contact order
Yawen Cai, Xuemei Ren, Yue Lang, Zhiyong Liu, Pengfei Zong, Xiangke Wanga and Shitong Yang
Environ. Sci.: Processes Impacts, 2015, 17, 1904-1914
DOI: 10.1039/C5EM00412H

—————-

About the webwriter

Fernando Gomollón-Bel is a PhD Student at the ISQCH (CSICUniversity of Zaragoza). His research focuses on asymmetric organic synthesis using sugars as chiral-pool starting materials towards the production of fungical transglycosidase inhibitors.

—————-

* Access is free until 20/12/2015 through a registered RSC account.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)