Archive for October, 2015

New insights into the leaching of radioisotopes from nuclear wastes

The sites of underground repositories for radioactive waste need to be selected, designed and built adequately. This requires an in-depth understanding of the geochemical processes governing the release and transport of radionuclides from the waste to the surrounding environment. In this study published in Environmental Science: Processes & Impacts, researchers describe a technique that will improve our knowledge of potential leaching of radionuclides in these environments.

Many countries around the world now meet a substantial fraction of their energy demand through nuclear power. A key environmental issue, therefore facing these nations, is how to ensure the safe and responsible disposal of radioactive wastes. The International Atomic Energy Agency outlines a number of different potential methods for disposing of radioactive wastes and discusses the approach of different nations.

Careful burial in well-engineered ‘repositories’ at various depths below the land surface – so-called ‘geological disposal’ – is now the preferred option for the final storage of nuclear waste for most countries with advanced nuclear programmes, including the UK, Canada, Finland, France, Sweden, Switzerland, Japan and the USA. Indeed, a 2004 European Commission Report on radioactive wastes states that:

“Burial at several hundreds of metres depth in stable rock environments is the option for disposal of the most hazardous radioactive wastes because it will provide permanent safety – not just for ourselves, but for future times very much longer than the whole of past human history.”

However, in order to ensure that this statement is true, it is essential to assess to what extent radionuclides could be released to the environment. Therefore, it is of great importance to understand how long-lived radionuclides (such as 79Se, 129I, 14C or 36Cl) are chemically bound in the radioactive waste matrix. The challenge for researchers and practitioners is to provide reliable safety assessments for such nuclear waste repository sites that provide reliable long-term predictions on the release of radionuclides in waste repositories as the waste undergoes geochemical transformations in ground waters.

Radiocative wastes are typically a highly heterogeneous material made up of the fuel matrix with 3–6% fission products and minor actinides dispersed among different phases. Long-lived isotopes like 79Se, 135Cs, 129I and 36Cl are of interest because they are easily soluble in water and sorb only weakly on mineral surfaces, implying that, once dissolved, under repository conditions they will migrate through the sub-surface environment very rapidly. These compounds are therefore major contributors to the overall radiological dose calculated in risk assessments of nuclear waste repositories.

The properties and behaviour of radionuclides like 79Se in nuclear wastes are not well understood due to the technical difficulty of obtaining sound experimental data on such highly radioactive materials. This insufficient knowledge is usually compensated by conservatism in the choice of parameter values for safety assessment calculations. For example, it has previously been assumed that a significant fraction of 79Se is rapidly released from the spent fuel waste on contact with aqueous solutions and is highly mobile. This is due to the observation that selenium has an appreciable volatility under reactor operation conditions and the high solubility of oxidized Se species in water.

However, recent experiments have indicated that less than 1% of the Se in a geological disposal repository is released to aqueous solution after 1 year leaching, suggesting only a small fraction is actually leachable. This demonstrates the need to further investigate the geochemical nature and behaviour of long-lived radionuclides such as 79Se in radioactive wastes and the interaction of these isotopes with spent UO2 fuel.

This work is the result of a collaboration between Swiss, Swedish, French and American research institutes, investigating radionuclide release of 79Se from radioactive waste in a deep water-saturated repository. In the study, X-ray Absorption Near Edge Spectroscopy (XANES) measurements were made on samples from the Leibstadt Boiling Water Reactor in Switzerland.

Their results offer a mechanistic explanation why Se appears to be much less soluble in short-term aqueous leaching experiments, compared to other radionuclides like I and Ce. It was shown that these results were corroborated by a simple thermodynamic analysis, showing that selenide is the stable form of Se under reactor operation conditions.

This study provides a technique that helps improve our understanding of the geochemical transformation and transport of radioactive nuclides in wastes disposed in geological formations. Investigations like this are required to reduce conservatism and improve reliability in carrying out safety assessment calculations. This work is therefore integral to the future selection and design of potential nuclear waste repository sites.


To read more about this research, download a copy of the manuscript for free* by clicking the link below.

Characterization of selenium in UO2 spent nuclear fuel by micro X-ray absorption spectroscopy and its thermodynamic stability
E. Curti, A. Puranen, D. Grolimund, D. Jädernas,D. Sheptyakov and A. Mesbah
Environ. Sci.: Processes Impacts, 2015,17, 1760-1768
DOI: 10.1039/C5EM00275C

—————-

About the webwriter

Ian Keyte is currently a Science Policy Intern at the Royal Society. He previously gained a PhD at the University of Birmingham investigating atmospheric pollution, and has a BSc in Environmental Chemistry from Lancaster University.

—————-


* Access is free until 24/11/2015 through a registered RSC account.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Teasing out the relative importance of controls on the production of a bioaccumulative neurotoxin

Environmental Science: Processes & Impacts cover highlights this research (issue 9)

Monomethylmercury (MeHg) is a chemical of great concern due to its neurotoxic nature and its efficient bioaccumulation in aquatic systems, eventually reaching humans through fish consumption.

MeHg is produced by the action of bacteria that transform the most commonly found species of mercury in aquatic environments. Remediation of mercury-contaminated sites requires insight into factors that facilitate the action of these mercury methylators. For example, anaerobic conditions and relatively large quantities of total and dissolved organic carbon both enhance production of MeHg.

The original speciation of mercury is also important, as some forms of mercure are more bioavailable to mercury methylators than others. Past work has traditionally focused on the influence of these factors individually; however, under environmental conditions these factors likely work in concert to affect mercury methylation.

Kucharzyk and co-workers at Duke University take the next step forward with their recent study published in Environmental Science: Processes & Impacts which aims to assess the relative influence of microbial productivity and mercury speciation on MeHg production. The researchers enriched cultures of mercury methylating bacteria found in two different marine sediments containing similar, elevated mercury concentrations. The cultures were determined to contain mostly one type of anaerobic bacteria known to methylate mercury.

For each of the two cultures, microbial growth was varied by adding different amounts of carbon substrate, and mercury speciation was varied with the addition of either dissolved or nanoparticulate mercury. The cultures were then incubated for 64 hours, during which two or three replicates were analyzed for various chemical and biological parameters at several time points across the incubation period.

In both cultures, mercury methylation increased with increasing concentrations of carbon substrate for a given type of mercury. When carbon substrate concentration was kept constant, the percentage of mercury that was methylated was 3 to 4 times lower in cultures amended with nanoparticulate mercury relative to those containing dissolved mercury instead. This could not have been due to differences in bacterial growth rates as the observed cell growth was the same across both types of added mercury, implying that the differences are probably a result of lower bioavailability of nanoparticulate mercury versus dissolved mercury.

The differences in microbial productivity between cultures spiked with the two different types of mercury became smaller with decreasing levels of carbon substrate. Interestingly, this data suggest there may be a threshold in the activity of mercury methylating bacteria, below which net MeHg production is controlled by the availability of carbon substrate, and above which the bioavailability of mercury becomes more important. However, further study including lower levels of carbon substrate is required to better confirm the existence of this threshold in microbial methylation activity.


Click on the link below to read the full article for free*:
Relative contributions of mercury bioavailability and microbial growth rate on net methylmercury production by anaerobic mixed cultures
Katarzyna H. Kucharzyk, Marc A. Deshusses, Kaitlyn A. Porter and Heileen Hsu-Kim
Environ. Sci.: Processes Impacts, 2015, 17, 1568-1577
DOI: 10.1039/C5EM00174A

—————-

About the webwriter

Abha Parajulee is a Ph.D. student at the University of Toronto Scarborough. She is interested in water resources and the behavior of organic contaminants in urban environments.

—————-

* Access is free until 18/11/2015 through a registered RSC account.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Vehicle fire: a danger for firemen?

There are 200,000 cars fires every year in the United States. The number in the UK is even more impressive: 100,000 car fires every year (which means around 300 fires a day). Car fires are usually short, but also very intense, and release dangerous products that may not only pollute the environment, but also seriously affect the firemen tackling them. Despite the high incidence of this type of fires, very few studies have addressed the hazardous exposures firemen may be suffering.

The sampling platform used for "vacuuming" the fumes

The sampling platform used for "vacuuming" the fumes

Two researchers from Cincinnati (Ohio) have published a paper in Environmental Science: Processes & Impacts investigating the dangers of ultrafine and respirable particles released during vehicle fire suppression. They set three different cars on fire and asked a crew of firemen to suppress them with water. Meanwhile, a huge “vacuum cleaner”-like machine took samples that were later analysed by the two scientists.

The particle emissions were, like the fires, only present for a short period of time. However, the concentrations measured during the blaze were orders of magnitude bigger than the safe limits. They also found that cabin fire suppression is more dangerous than putting out just the engine compartment. The explanation might be simple: when the whole cabin is burning down, there is more fuel feeding the combustion, leading to more emissions and longer extinction times.

Another key aspect to consider is wind. Usually fire crews are trained to position themselves in an upwind and smoke-free spot, but you can’t control wind. When wind veered, particle emissions went off the chart, consequently increasing the risks.

Further studies will be carried out. In the meantime, the authors conclude that a self-contained breathing apparatus (a mask that works with compressed air generating a positive pressure inside it) should be worn throughout all the phases of extinguishing a vehicle fire. Otherwise, the hazardous vapours and particles released to the atmosphere may increase the risk of cancer in firemen.

Click on the link below to read the full article for free*

Ultrafine and respirable particle exposure during vehicle fire suppression
Douglas E. Evans and Kenneth W. Fent
Environ. Sci.: Processes Impacts, 2015, 17, 1749-1759
DOI: 10.1039/C5EM00233H

—————-

About the webwriter

Fernando Gomollón-Bel is a PhD Student at the ISQCH (CSICUniversity of Zaragoza). His research focuses on asymmetric organic synthesis using sugars as chiral-pool starting materials towards the production of fungical transglycosidase inhibitors.

—————-

* Access is free through a registered RSC account.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)