The rise of the sodium ion battery

A nanostructured material has been used as an anode in a sodium ion battery for the first time and its performance is better than all carbon materials tested so far, say researchers from Germany.

With the increasing demand for large scale stationary storage systems, cheap sodium-based systems have become attractive. Graphite, the standard anode material in lithium ion batteries is not suitable for a sodium-based system because sodium cannot be inserted between graphite layers. Instead, the team have made a porous carbon material to capture the sodium. The resulting material has excellent rate capability at room temperature, says the team.

Read the Energy & Environmental Science article today:

Room-temperature Sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies
S Wenzel, T Hara, J Janek and P Adelhelm, Energy Environ. Sci., 2011
DOI: 10.1039/c1ee01744f

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

EES Poster Prize: Würzburg OPV Conference

Energy & Environmental Science was delighted to award Poster Prize at the recent Würzburg OPV Conference held in June 2011.

We are pleased to announce the winning poster was by Hannes Kraus and Andreas Sperlich form the University of Würzburg, entitled Magnetic Resonance Study of Organic Solar Cells and the Influence of Morphology on Organic Solar Cells.

OPV conference prize

Prize winners (left to right): Prof. Magerle, Andreas Sperlich, Hannes Kraus and Prof. Dyakonov.

The winners were presented with an Energy & Environmental Science Prize certificate, as well as a financial award. Energy & Environmental Science will be awarding further Poster Prizes over the summer so watch this space!

Sign-up to the free Energy & Environmental Science contents e-alert and newsletter to hear about the latest research published on photovoltaics.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Themed issue: Biomimetic approaches to artificial photosynthesis

We are delighted to present the current issue of Energy & Environmental Science as a themed issue on biomimetic approaches to artificial photosynthesis, Guest Edited by Leif Hammarström and Michael R. Wasielewski.

coverThe issue includes a lively mix of reviews, Perspective feature articles, Communications and full papers. Take a look at the great issue today, including:

Review
Spectroscopically characterized intermediates of catalytic H2 formation by [FeFe] hydrogenase models
Stefanie Tschierlei, Sascha Ott and Reiner Lomoth, Energy Environ. Sci., 2011, 4, 2340

Perspective
Artificial photosynthetic systems. Using light and water to provide electrons and protons for the synthesis of a fuel
Christian Herrero, Annamaria Quaranta, Winfried Leibl, A. William Rutherford and Ally Aukauloo, Energy Environ. Sci., 2011, 4, 2353

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

EES Poster Prize: solar summer school

Energy & Environmental Science was delighted to award Poster Prize at the recent international summer school on “Frontiers in Organic, Dye-Sensitised and Hybrid Photovoltaics” held in Krutyn, Poland from 14-20 June 2011. The summer school was jointly organized by Edinburgh University, Institute of Physical Chemistry of the Polish Academy of Sciences and the Polish Supramolecular Chemistry Network Foundation.

The winning poster was:
Tris-thiocyanate Ru(II) Sensitizers with Functionalized Dicarboxy Terpyridine for Dye Sensitized Solar Cells
Kuan-Lin Wu, Shen-Han Yang, Yun Chi,* Yi-Ming Cheng, Pi-Tai Chou*

The winner was presented with an Energy & Environmental Science Prize certificate, as well as a financial award. Energy & Environmental Science will be awarding further Poster Prizes over the summer so watch this space!

Sign-up to the free Energy & Environmental Science e-alert to recieve our great solar research direct to your inbox.

summer school poland

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Energy & Environmental Science new record Impact Factor of 9.4

New citation data just released by Thomson ISI shows the new Impact Factor of Energy & Environmental Science to be 9.446.

Energy & Environmental Science is not only still the #1 ranking journal in its ISI subject category, but now is one of the top-ranking chemistry journals.

The fantastic news demonstrates that the journal continues to attract and publish outstanding research, which appeals to its community-spanning international readership.

We wish to thank all our Board members, authors and referees for their continuing support – your input has made the journal what it is.

Please do continue to submit your best work to Energy & Environmental Science.We look forward to further success in the months and years ahead.

With our best wishes,

Energy & Environmental Science Editorial Office

Find out more about RSC Publishing’s 2010 Impact Factors

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

A step forward for space power

US scientists have gained insights into how to improve polymer solar cells’ stability in space to power shuttles.

Inorganic solar cells have been investigated as power sources for spacecraft, and they are efficient, but they are heavy, so are costly to launch. Because of this, the power gains are marginal.

Organic polymer solar cells are light and flexible, making them attractive for use in satellites. But, these cells would degrade when exposed to the x-ray radiation present in space, making them inefficient. The x-rays pass through the relatively transparent polymer layer, causing a loss in voltage in the device.

Yang Yang from the University of California, Los Angeles, and Roderick Devine from the Air Force Research Laboratory at Kirtland Air Force Base, New Mexico, have discovered that the interface between the photoactive polymer layer and the electrode of the cell is the key to the cell’s reaction to x-rays.  

Satellite

Polymer solar cells are lightweight so can be transported to space at a fraction of the cost of inorganic cells that are being investigated as power sources for spacecraft

 The team saw that a charge accumulating at the interface after radiation exposure was causing the loss of voltage and that by modifying the interface, they could lessen this accumulation and improve the cell’s stability. They tested different electrode interfaces – Ca/Al, Al and LiF/Al compared to TiO2:Cs/Al and ZnO/Al interfaces – and found that the metal-oxide/metal interfaces were less susceptible to radiation.

Jianyong Ouyang from the National University of Singapore, an expert in polymeric electronic materials and devices, is impressed by Yang’s research. ‘The work is practically significant in that it provides guidance for improving polymer solar cells,’ he says.

‘In the immediate future, we will continue to focus our efforts on the interface to gain a greater understanding and control of its properties,’ concludes Yang.

Catherine Bacon

Read the Energy & Environmental Science article:

Interface design to improve stability of polymer solar cells for potential space applications
Ankit Kumar, Nadav Rosen, Roderick Devine and Yang Yang
Energy Environ. Sci., 2011, DOI: 10.1039/c1ee01368h

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Nanogenerators for environmental sensors

A nanomaterial-based, self-powered sensor that detects mercury in water has been developed by teams from the US and Korea.

Most environmental sensors need to be wired to a power supply, which can be expensive in terms of parts and labour. There is also the potential for contamination from batteries. Solar energy is a more attractive, and greener, alternative, but it relies on weather conditions and time of day. 

Instead, Zhong Lin Wang, from the Georgia Institute of Technology, Atlanta, US, and colleagues have made a standalone sensor that harvests energy from movements occurring in its surroundings. They created a nanogenerator to harvest the energy using zinc oxide nanowires (ZnO NW). The nanowires are piezoelectric, which means that they accumulate charge when they are moved, and they’re environmentally friendly.

Zinc oxide nanowires and gold film on flexible substrates

Left: zinc oxide nanowires on a flexible substrate (top) with a gold film electrode (bottom); right: zinc oxide nanowires

 The team made the device by placing the nanowires onto a flexible substrate, with the ends of the wires in contact with a gold film electrode. When the nanowires were compressed as a result of movement, electrons flowed along the wires to the gold conductor. With successive compression and release, the electrons flowed back and forth, producing an electrical current. The output was stored in a capacitor to power the sensor to detect pollutants periodically. The sensor was made from single walled carbon nanotubes that turn on an LED indicator. Wang tested the device in water and found that the LED lit up in the presence of mercury ions, and the mercury concentration was indicated by the intensity of the LED. 

‘What’s most exciting is that we have built a self-powered system that is driven by energy harvested from the environment that can work independently and sustainably,’ says Wang.  In the future, Wang hopes to apply the nanogenerators in other areas besides environmental sensing. ‘There are potential applications in wireless biosensing, sensor networks, personal electronics and even national security,’ he says. His team is also looking at harvesting energy from the environment in other ways such as turbulence in water or air flow and sonic waves.

Jun Liu, from the Pacific Northwest National Laboratory, Richland, US, who works on the synthesis and applications of nanostructured materials for energy was impressed with the device and says that the research has great potential for practical applications. ‘Some biomedical applications or remote area sensing make it difficult to provide the power for very small devices. Fully functional and standalone nanodevices will be handy for these applications,’ he says.

Rebecca Brodie

Read the Energy & Environmental Science article:

Self-powered environmental sensor system driven by nanogenerators
Minbaek Lee, Joonho Bae, Joohyung Lee, Churl-Seung Lee, Seunghun Hong and Zhong Lin Wang
Energy Environ. Sci., 2011, DOI: 10.1039/c1ee01558c

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Polymeric complexes for lithium storage

Organic materials look to finally fulfil their potential as electrodes after scientists in France and China create a new type of lithium storage material that uses polymeric complexes. 

Structure of the material showing the lithium storage sites (pink balls).

Although previous attempts at making lithium storage materials (important for lithium ion batteries) from polypyrrole complexes have failed due to their negligible storage capacity, Qingyu Kong and Zhaoxiang Wang et al. have modified traditional polymerisation and reduction processes to make a polypyrrole–iron–oxygen complex that has overcome previous problems. 

The multilayered material possesses strong intralayer Fe–N coordination, which endows it with high specific capacity. In addition, the high reversibility of the Fe–O–Fe interactions during cycling means the material has high stability. Finally, the conducting polypyrrole matrix gives the material an excellent rate performance. 

Read about this exciting new find here.

Polypyrrole-iron-oxygen coordination complex as high performance lithium storage material
Qingyu Kong and Zhaoxiang Wang et al.
Energy Environ. Sci., 2011 DOI: 10.1039/C1EE01275D

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Water splitting using bacteriorhodopsin/TiO2 nanotubes

HOT paper:

This Energy & Environmental Science article reports for the first time the use of bacteriorhodopsin(bR)/TiO2 hybrid electrodes in photoelectrochemical water oxidation cells.

water splittingIt is thought the proton pumping property of bR can be used in a variety of applications, especially those related to third generation photovoltaic cells.

Read this HOT article today:

Bacteriorhodopsin/TiO2 nanotube arrays hybrid system for enhanced photoelectrochemical water splitting
Nageh K. Allam, Chun-Wan Yen, Rachel D. Near and Mostafa A. El-Sayed
Energy Environ. Sci., 2011, DOI: 10.1039/C1EE01447A

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Not a basic fuel cell

A hydrogen peroxide fuel cell has been operated under acidic conditions for the first time by scientists in Japan and Korea.

Hydrogen peroxide can be a benign energy carrier because it can be produced by the two-electron reduction of oxygen and can also generate electricity by hydrogen peroxide fuel cells. Electrochemical oxygen reduction takes place in acidic conditions with high current efficiencies, but all hydrogen peroxide fuel cells, until now, have operated under basic conditions.

The acidic fuel cell’s open current potential was a dramatic improvement over fuel cells operated under basic conditions, say the researchers.

Read the paper today –
Protonated iron-phthalocyaninate complex used for cathode material of a hydrogen peroxide fuel cell operated under acidic conditions
Y Yamada, S Yoshida, T Honda and S Fukuzumi
Energy Environ. Sci., 2011, DOI: 10.1039/c1ee01587g

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)