Archive for October, 2013

N-doped Graphene Monolayer as Catalyst for Photoelectrochemical Hydrogen Production

Researchers have demonstrated the use of doped graphene to improve the photoelectrochemical production of hydrogen.

In a novel approach, a monolayer of graphene has been reported as an effective catalyst towards the hydrogen evolution reaction (HER). By depositing a single layer of graphene on a p-doped silicon photocathode, the overpotential required for the HER in the presence of light was shifted positively by 0.18 V vs. RHE. The catalytic activity was confirmed to be a result of the graphene layer by testing on a glassy carbon substrate, where a 50 mV shift in onset compared to glassy carbon baseline was discovered.

Overpotential reduction through catalyst layer modification on Si photocathode

This transparent catalyst monolayer was also shown to act as a passivation layer, preventing oxidation of the substrate while maintaining current density. This led to a more consistent onset potential when compared to the bare Si photocathode, which degraded over time quite substantially. Furthermore, by treating the graphene layer in nitrogen plasma, the added defects, as well as the nitrogen doping, led to even further improvements in catalytic activity towards HER.

As a proof of concept, platinum was added to the N-doped graphene monolayer, where a solar-to-hydrogen conversion efficiency of 3.05% was reported, which maintained activity over a range of pH. With further optimizations, carbon based catalysts can contend as a cost effective method for the clean production of hydrogen on a commercial scale.

Interested? Read the full communication in Energy and Environmental Science here:

N-doped monolayer graphene catalyst on silicon photocathode for hydrogen production
Uk Sim, Tae-Youl Yang, Joonhee Moon, Junghyun An, Jinyeon Hwang, Jung-Hye Seo, Jouhahn Lee, Kye Yeop Kim, Joohee Lee, Seungwu Han, Byung Hee Hong and Ki Tae Nam
Energy Environ. Sci., 2013, Paper
DOI: 10.1039/C3EE42106F

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

High impact research on biotechnology

We would like to share with you a selection of recent articles published in the Royal Society of Chemistry journals Energy & Environmental Science (EES), Nanoscale and Physical Chemistry Chemical Physics (PCCP) in the area of biotechnology.

You can read these articles for free for a limited period by clicking on the links below.

EES, Nanoscale and PCCP are high-impact journals published on a not-for-profit ethos for the benefit of the wider scientific community.

Sign up to receive the latest news from your favourite journals.


With an Impact Factor of 11.65, which is rising fast, EES is the ideal place to publish your research.

FREE: The role of biofuels in the future energy supply
Luis Caspeta, Nicolaas A. A. Buijs and Jens Nielsen
DOI: 10.1039/C3EE24403B, Opinion

FREE: Implanted biofuel cells operating in vivo – methods, applications and perspectives – feature article
Evgeny Katz and Kevin MacVittie
DOI: 10.1039/C3EE42126K, Opinion

FREE: Enzymes and bio-inspired electrocatalysts in solar fuel devices
Thomas W. Woolerton, Sally Sheard, Yatendra S. Chaudhary and Fraser A. Armstrong
DOI: 10.1039/C2EE21471G, Perspective

FREE: From biodiesel and bioethanol to liquid hydrocarbon fuels: new hydrotreating and advanced microbial technologies
Juan Carlos Serrano-Ruiz, Enrique V. Ramos-Fernández and Antonio Sepúlveda-Escribano
DOI: 10.1039/C1EE02418C, Perspective

FREE: Immobilization technology: a sustainable solution for biofuel cell design
Xiao-Yu Yang, Ge Tian, Nan Jiang and Bao-Lian Su
DOI: 10.1039/C1EE02391H, Review Article

FREE: Oxygen-tolerant coenzyme A-acylating aldehyde dehydrogenase facilitates efficient photosynthetic n-butanol biosynthesis in cyanobacteria
Ethan I. Lan, Soo Y. Ro and James C. Liao
DOI: 10.1039/C3EE41405A, Paper

FREE: Engineered yeast for enhanced CO2 mineralization
Roberto Barbero, Lino Carnelli, Anna Simon, Albert Kao, Alessandra d’Arminio Monforte, Moreno Riccò, Daniele Bianchi and Angela Belcher
DOI: 10.1039/C2EE24060B, Paper

FREE: Layered corrugated electrode macrostructures boost microbial bioelectrocatalysis
Shuiliang Chen, Guanghua He, Qin Liu, Falk Harnisch, Yan Zhou, Yu Chen, Muddasir Hanif, Suqin Wang, Xinwen Peng, Haoqing Hou and Uwe Schröder
DOI: 10.1039/C2EE23344D, Communication

FREE: An extremely radioresistant green eukaryote for radionuclide bio-decontamination in the nuclear industry
Corinne Rivasseau, Emmanuel Farhi, Ariane Atteia, Alain Couté, Marina Gromova, Diane de Gouvion Saint Cyr, Anne-Marie Boisson, Anne-Sophie Féret, Estelle Compagnon and Richard Bligny
DOI: 10.1039/C2EE23129H, Paper

FREE: Living battery – biofuel cells operating in vivo in clams
Alon Szczupak, Jan Halámek, Lenka Halámková, Vera Bocharova, Lital Alfonta and Evgeny Katz
DOI: 10.1039/C2EE21626D, Communication


Nanoscale publishes community-spanning research across the fields of nanoscience and nanotechnology. Its Impact Factor is currently 6.23.

FREE: The interplay between carbon nanomaterials and amyloid fibrils in bio-nanotechnology
Chaoxu Li and Raffaele Mezzenga
DOI: 10.1039/C3NR01644G, Review Article

FREE: Lanthanide-doped luminescent nano-bioprobes: from fundamentals to biodetection
Yongsheng Liu, Datao Tu, Haomiao Zhu, En Ma and Xueyuan Chen
DOI: 10.1039/C2NR33239F, Feature Article

FREE: Cholesterol – a biological compound as a building block in bionanotechnology
Leticia Hosta-Rigau, Yan Zhang, Boon M. Teo, Almar Postma and Brigitte Städler
DOI: 10.1039/C2NR32923A, Feature Article

FREE: Plant mediated green synthesis: modified approaches
Ratul Kumar Das and Satinder Kaur Brar
DOI: 10.1039/C3NR02548A, Minireview

FREE: Graphene: a versatile nanoplatform for biomedical applications
Yin Zhang, Tapas R. Nayak, Hao Hong and Weibo Cai
DOI: 10.1039/C2NR31040F, Review Article

FREE: Nanocellulose electroconductive composites
Zhijun Shi, Glyn O. Phillips and Guang Yang
DOI: 10.1039/C3NR00408B, Minireview

FREE: Recombinant antibody mediated delivery of organelle-specific DNA pH sensors along endocytic pathways.
Yamuna Krishnan, Souvik Modi, Saheli Halder and Clément Nizak
DOI: 10.1039/C3NR03769J, Paper

FREE: Multi-enzyme Co-Embedded Organic-Inorganic Hybrid Nanoflowers: Synthesis and Application in Colorimetric Sensor
Jiayu Sun, Jiechao Ge, Weimin Liu, Minhuan Lan, Hongyan Zhang, Pengfei Wang, Yanming Wang and Zhongwei Niu
DOI: 10.1039/C3NR04425D, Paper

FREE: An unusual pathway for the membrane wrapping of rodlike nanoparticles and the orientation- and membrane wrapping-dependent nanoparticle interaction
Tongtao Yue, Xiaojuan Wang, Fang Huang and Xianren Zhang
DOI: 10.1039/C3NR02683C, Paper

FREE: Flash photo stimulation of human neural stem cells on graphene/TiO2 heterojunction for differentiation into neurons
Omid Akhavan and Elham Ghaderi
DOI: 10.1039/C3NR02161K, Paper

FREE: Bio-nanohybrids of quantum dots and photoproteins facilitating strong nonradiative energy transfer
Urartu Ozgur Safak Seker, Evren Mutlugun, Pedro Ludwig Hernandez-Martinez, Vijay K. Sharma, Vladimir Lesnyak, Nikolai Gaponik, Alexander Eychmüller and Hilmi Volkan Demir
DOI: 10.1039/C3NR01417G, Paper

FREE: A methodology for preparing nanostructured biomolecular interfaces with high enzymatic activity
Lu Shin Wong, Chinnan V. Karthikeyan, Daniel J. Eichelsdoerfer, Jason Micklefield and Chad A. Mirkin
DOI: 10.1039/C1NR11443C, Paper


PCCP is committed to publishing the best research across physical chemistry, chemical physics and biophysical chemistry.

FREE: Miniaturized biological and electrochemical fuel cells: challenges and applications
Jie Yang, Sasan Ghobadian, Payton J. Goodrich, Reza Montazami and Nastaran Hashemi
DOI: 10.1039/C3CP50804H, Perspective

FREE: Plasmonic fluorescence enhancement by metal nanostructures: shaping the future of bionanotechnology
Daniel Darvill, Anthony Centeno and Fang Xie
DOI: 10.1039/C3CP50415H, Perspective

FREE: Construction of biomimetic smart nanochannels with polymer membranes and application in energy conversion systems
Liping Wen, Ye Tian, Jie Ma, Jin Zhai and Lei Jiang
DOI: 10.1039/C2CP23911F, Perspective

FREE: Encapsulation of actives for sustained release
Markus Andersson Trojer, Lars Nordstierna, Matias Nordin, Magnus Nydén and Krister Holmberg
DOI: 10.1039/C3CP52686K, Perspective

FREE: Mussel inspired surface functionalization of electrospun nanofibers for bio-applications
Søren Roesgaard Nielsen, Flemming Besenbacher and Menglin Chen
DOI: 10.1039/C3CP52651H, Perspective

FREE: Physics and engineering of peptide supramolecular nanostructures
Amir Handelman, Peter Beker, Nadav Amdursky and Gil Rosenman
DOI: 10.1039/C2CP40157F, Perspective

FREE: A pacemaker powered by an implantable biofuel cell operating under conditions mimicking the human blood circulatory system – battery not included
Mark Southcott, Kevin MacVittie, Jan Halámek, Lenka Halámková, William D. Jemison, Robert Lobel and Evgeny Katz
DOI: 10.1039/C3CP50929J, Paper

FREE: A novel three-dimensional macrocellular carbonaceous biofuel cell
Victoria Flexer, Nicolas Brun, Mathieu Destribats, Rénal Backov and Nicolas Mano
DOI: 10.1039/C3CP50807B, Pape

FREE: In situ fluorescence and electrochemical monitoring of a photosynthetic microbial fuel cell
Alister E. Inglesby, Kamran Yunus and Adrian C. Fisher
DOI: 10.1039/C3CP51076J, Paper

FREE: Surface morphology and surface energy of anode materials influence power outputs in a multi-channel mediatorless bio-photovoltaic (BPV) system
Paolo Bombelli, Marie Zarrouati, Rebecca J. Thorne, Kenneth Schneider, Stephen J. L. Rowden, Akin Ali, Kamran Yunus, Petra J. Cameron, Adrian C. Fisher, D. Ian Wilson, Christopher J. Howe and Alistair J. McCormick
DOI: 10.1039/C2CP42526B, Paper

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

The top ten highest scoring articles in EES according to Altmetrics

You can now find “Altmetric” data for articles in Energy & Environmental Science on our website, alongside information about citations to our articles.

With a constantly changing publishing landscape and changes to the way people use scientific literature, altmetrics is a measure that can monitor the level of conversation and interest in a particular piece of research at the article level. The different colours in the Altmetric “donut” indicate the number of times the article has been mentioned on Twitter, Facebook, newspapers, blogs and other outlets. Check out the “Metrics” tab on each article page for more information.

So get involved: tweet about your latest article, share a link to an interesting review on Facebook, and spread the word about some of the excellent science being published.

Energy & Environmental Science is on Twitter (@EES_journal) and Facebook (www.facebook.com/RSCEES), tweeting and posting about events you may find interesting as well as our latest hot articles and news. If you are using these social media sites too, please do follow/like us.

The current top ten scoring articles in Energy & Environmental Science according to Altmetrics are:


Worldwide health effects of the Fukushima Daiichi nuclear accident
John E. Ten Hoeve and Mark Z. Jacobson
DOI: 10.1039/C2EE22019A

The energetic implications of curtailing versus storing solar- and wind-generated electricity (Open Access)
Charles J. Barnhart, Michael Dale, Adam R. Brandt and Sally M. Benson
DOI: 10.1039/C3EE41973H

Assessing the drivers of regional trends in solar photovoltaic manufacturing (Open Access)
Alan C. Goodrich, Douglas M. Powell, Ted L. James, Michael Woodhouse and Tonio Buonassisi
DOI: 10.1039/C3EE40701B

On chip, all solid-state and flexible micro-supercapacitors with high performance based on MnOx/Au multilayers
Wenping Si, Chenglin Yan, Yao Chen, Steffen Oswald, Luyang Han and Oliver G. Schmidt
DOI: 10.1039/C3EE41286E

On the importance of reducing the energetic and material demands of electrical energy storage
Charles J. Barnhart and Sally M. Benson
DOI: 10.1039/C3EE24040A

High Seebeck coefficient redox ionic liquid electrolytes for thermal energy harvesting
Theodore J. Abraham, Douglas R. MacFarlane and Jennifer M. Pringle
DOI: 10.1039/C3EE41608A

High photo-electrochemical activity of thylakoid–carbon nanotube composites for photosynthetic energy conversion
Jessica O. Calkins, Yogeswaran Umasankar, Hugh O’Neill and Ramaraja P. Ramasamy
DOI: 10.1039/C3EE40634B

Biomass-derived electrocatalytic composites for hydrogen evolution
Wei-Fu Chen, Shilpa Iyer, Shweta Iyer, Kotaro Sasaki, Chiu-Hui Wang, Yimei Zhu, James T. Muckerman and Etsuko Fujita
DOI: 10.1039/C3EE40596F

Opinion on “Worldwide health effects of the Fukushima Daiichi nuclear accident” by J. E. Ten Hoeve and M. Z. Jacobson, Energy Environ. Sci., 2012, 5, DOI: 10.1039/c2ee22019a
Burton Richter
DOI: 10.1039/C2EE22658H

Post-combustion carbon dioxide capture using electrochemically mediated amine regeneration
Michael C. Stern, Fritz Simeon, Howard Herzog and T. Alan Hatton
DOI: 10.1039/C3EE41165F

We are interested to hear your feedback on this new development and how you are utilising these new types of metrics. Please get in touch by email (ees-rsc@rsc.org).

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

This week’s HOT articles

Take a look at this week’s selection! These articles are available free for a limited time:

Tetragonal Li10GeP2S12 and Li7GePS8 – exploring the Li ion dynamics in LGPS Li electrolytes
Alexander Kuhn, Viola Duppel and Bettina V. Lotsch
DOI: 10.1039/C3EE41728J, Communication

A perfluorinated covalent triazine-based framework for highly selective and water–tolerant CO2 capture
Yunfeng Zhao, Ke Xin Yao, Baiyang Teng, Tong Zhang and Yu Han
DOI: 10.1039/C3EE42548G, Paper

Lead candidates for high-performance organic photovoltaics from high-throughput quantum chemistry – the Harvard Clean Energy Project
Johannes Hachmann, Roberto Olivares-Amaya, Adrian Jinich, Anthony L. Appleton, Martin A. Blood-Forsythe, László R. Seress, Carolina Román-Salgado, Kai Trepte, Sule Atahan-Evrenk, Süleyman Er, Supriya Shrestha, Rajib Mondal, Anatoliy Sokolov, Zhenan Bao and Alán Aspuru-Guzik
DOI: 10.1039/C3EE42756K, Paper

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

EES Issue 11 of 2013 out now!

EES 11 Outside Front CoverThe latest issue of EES is now online. You can read the full issue here.

The outside front cover features the paper Parameters affecting electron transfer dynamics from semiconductors to molecular catalysts for the photochemical reduction of protons Anna Reynal, et al.

Semi-crystalline random conjugated copolymers with panchromatic absorption for highly efficient polymer solar cells in the paper highlighted on the inside front cover by Jae Woong et al.

Issue 11 contains a number of excellent Opinion, Analysis, Review and Perspective articles:

Status and perspectives of CO 2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes
Evgenii V. Kondratenko, Guido Mul, Jonas Baltrusaitis, Gastón O. Larrazábal and Javier Pérez-Ramírez

Life cycle analyses of organic photovoltaics: a review
Sebastien Lizin, Steven Van Passel, Ellen De Schepper, Wouter Maes, Laurence Lutsen, Jean Manca and Dirk VanderzandeEES 11 Inside Front Cover

Triple junction polymer solar cells
Olusegun Adebanjo, Purna P. Maharjan, Prajwal Adhikary, Mingtai Wang, Shangfeng Yang and Qiquan Qiao

The state and future prospects of kesterite photovoltaics
Alex Polizzotti, Ingrid L. Repins, Rommel Noufi, Su-Huai Wei and David B. Mitzi

A perspective: carbon nanotube macro-films for energy storage
Zeyuan Cao and Bingqing (B. Q.) Wei

Developing understanding of organic photovoltaic devices: kinetic Monte Carlo models of geminate and non-geminate recombination, charge transport and charge extraction
Chris Groves

Fancy submitting an article to EES? Then why not submit to us today!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Molten air – a new class of battery – EES article in Chemistry World


Scientists from the US have invented a new type of battery. The so-called ‘molten air batteries’ have among the highest electrical storage capacities of all battery types to date.

Inexpensive batteries with better energy storage densities are needed for many applications. For example, one barrier to the large-scale adoption of electric cars is the limited distance they can travel before their battery needs recharging.

Stuart Licht and his group at George Washington University think their molten air batteries could be the answer. They made three different versions of the battery using iron, carbon or vanadium boride as the molten electrolyte. Just like metal–air batteries, molten air batteries use oxygen from the air as the cathode material instead of an internal oxidiser, which makes them light. And similar to very high energy density vanadium boride–air batteries, molten air batteries can store many electrons per molecule.

Interested to know more? Read the full news article by Rowan Frame in Chemistry World here…

Read the article by  S Licht et al. in EES:

Molten air – a new, highest energy class of rechargeable batteries
Stuart Licht, Baochen Cui, Jessica Stuart, Baohui Wang and Jason Lau
Energy Environ. Sci., 2013, Advance Article
DOI: 10.1039/C3EE42654H, Paper

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Top 10 most-read EES articles – Q3 2013

This month sees the following articles in Energy & Environmental Science that are in the top 10 most accessed from July – September:

The energetic implications of curtailing versus storing solar- and wind-generated electricity
Charles J. Barnhart, Michael Dale, Adam R. Brandt and Sally M. Benson
Energy Environ. Sci., 2013,6, 2804-2810
DOI: 10.1039/C3EE41973H

Low-temperature processed meso-superstructured to thin-film perovskite solar cells
James M. Ball, Michael M. Lee, Andrew Hey and Henry J. Snaith
Energy Environ. Sci., 2013,6, 1739-1743
DOI: 10.1039/C3EE40810H

Assessing the drivers of regional trends in solar photovoltaic manufacturing
Alan C. Goodrich, Douglas M. Powell, Ted L. James, Michael Woodhouse and Tonio Buonassisi
Energy Environ. Sci., 2013,6, 2811-2821
DOI: 10.1039/C3EE40701B

Challenges in the development of advanced Li-ion batteries: a review
Vinodkumar Etacheri, Rotem Marom, Ran Elazari, Gregory Salitra and Doron Aurbach
Energy Environ. Sci., 2011,4, 3243-3262
DOI: 10.1039/C1EE01598B

Ultrathin amorphous zinc-tin-oxide buffer layer for enhancing heterojunction interface quality in metal-oxide solar cells
Yun Seog Lee, Jaeyeong Heo, Sin Cheng Siah, Jonathan P. Mailoa, Riley E. Brandt, Sang Bok Kim, Roy G. Gordon and Tonio Buonassisi
Energy Environ. Sci., 2013,6, 2112-2118
DOI: 10.1039/C3EE24461J

Room-temperature stationary sodium-ion batteries for large-scale electric energy storage
Huilin Pan, Yong-Sheng Hu and Liquan Chen
Energy Environ. Sci., 2013,6, 2338-2360
DOI: 10.1039/C3EE40847G

Graphene based new energy materials
Yiqing Sun, Qiong Wu and Gaoquan Shi
Energy Environ. Sci., 2011,4, 1113-1132
DOI: 10.1039/C0EE00683A

Highly efficient organic tandem solar cells: a follow up review
Tayebeh Ameri, Ning Li and Christoph J. Brabec
Energy Environ. Sci., 2013,6, 2390-2413
DOI: 10.1039/C3EE40388B

3D carbon based nanostructures for advanced supercapacitors
Hao Jiang, Pooi See Lee and Chunzhong Li
Energy Environ. Sci., 2013,6, 41-53
DOI: 10.1039/C2EE23284G

New energy storage devices for post lithium-ion batteries
Haoshen Zhou
Energy Environ. Sci., 2013,6, 2256-2256
DOI: 10.1039/C3EE90024J

Why not take a look at the articles today and blog your thoughts and comments below

Fancy submitting an article to EES? Then why not submit to us today!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Beyond incineration, beyond recycling: the myriad uses of “waste” plastics, present and future

By reviewing both current laboratory and industrial-scale reactors and emerging technologies, Baytekin, Baytekin and Grzybowski offer strategic alternatives to incineration that usefully could harness the giant potential energy found in discarded synthetic polymers through their Energy and Environmental Science article, Retrieving and converting energy from polymers: deployable technologies and emerging concepts.

Plastics constitute many millions of tonnes of waste globally each year – 28 million tonnes in the United States alone, a waste approaching a trillion MJ of energy. Less than 10% of polymers are recycled effectively and 12% are incinerated, but incineration of plastics merely substitutes one pollutant for many; these authors offer real, clean, and effective alternatives that make better use of this energy reserve, some presently feasible on the industrial scale and others still in development. Anyone with an interest in emerging energy technologies, energy policy, industrial chemistry, active polymers, or green chemistry would certainly read this article with great interest.

One high-value recycling strategy is chemical degradation of polymers – mainly by heating under inert, partial O2, or H2 atmospheres – to surprisingly useful ends. In one instance, PMMA yields its monomer, methylmethacrylate, at a yield of 97%. Polymers with high levels of impurities can be converted into fuels such as diesel, coke, and hydrogen at high qualities, with high efficiency, and on the industrial scale. The authors also discuss more exotic energy interconversions involving polymers, presently being developed, among them mechanical to electrical energy interconversion via triboelectric and piezoelectric generators and heat to electrical energy interconversion via polymer thermoelectrics, adding a vision of future possibilities to this already enthralling read.

Read the article in EES:

Retrieving andconverting energy from polymers: deployable technologies and emerging concepts
Bilge Baytekin, H. Tarik Baytekin, and Bartosz A. Grybowski
DOI: 10.1039/C3EE41360H

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

SuNEC 2013: There is Enough Sun for All

Jointly organized by the Institute of Nanostructured Materials of Italy’s Research Council (CNR) and by Palermo’s University Department of Electrical Engineering (DEIM), the third “SuNEC – Sun New Energy Conference” was held in Santa Flavia, Sicily, on September 10-12, 2013.

The lectures, oral presentations and poster presentations highlighted approaches to exploit solar energy, including concentrated solar power, thin-film photovoltaics, artifical photosynthesis and solar thermal energy.

Invited speakers at SuNEC 2013 included Yu A. Baurov (Russian Academy of the Sciences), Wai-Yeung Wong (Hong Kong Baptist University) Antonino S. Aricò (CNR, Italy), Francesco Meneguzzo (CNR, Italy) as well as novelist and thinker Ottavio Cappellani (Catania, Italy).

The winner of the 2013 Poster presentation was Maria Rita Girolamo.

The 4th edition of the SuNEC Conference will be held in Sicily again, on the 8-10th September 2014. Interested scientists can easily register online at www.solar-conference.eu.

You might be interested in these articles in EES:

Solar hydrogen: fuel of the near future
Mario Pagliaro, Athanasios G. Konstandopoulos, Rosaria Ciriminna and Giovanni Palmisano
Journal Article Energy Environ. Sci., 2010,3, 279-287
DOI: 10.1039/B923793N, Perspective

Solar cells with one-day energy payback for the factories of the future
Nieves Espinosa, Markus Hösel, Dechan Angmo and Frederik C. Krebs
Journal Article Energy Environ. Sci., 2012,5, 5117-5132
DOI: 10.1039/C1EE02728J, Analysis

Plasmonic solar water splitting
Scott C. Warren and Elijah Thimsen
Journal Article Energy Environ. Sci., 2012,5, 5133-5146
DOI: 10.1039/C1EE02875H, Review Article

You might also be interested in our solar fuels and solar photovoltaics collections.

View “A focus on solar photovoltaics”

View “A Focus on Solar Fuels and Artificial Photosynthesis”

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Indirect Nanoplasmonic Sensing for In Situ Studies of Dye-Sensitized Solar Cells

Researchers led by Professor Christoph Langhammer have developed a novel tool based on indirect nanoplasmonic sensing for in situ studies of dye-sensitized solar cells (DSSCs). Their work elucidates the kinetics of dye impregnation into mesoporous TiO2, known to be a critical step in fabrication of DSSCs and therefore important for scale-up of DSSCs.

DSSCs offer a potentially low-cost, aesthetically appealing alternative to conventional silicon based technologies. The key components of a cell are a TiO2 film filled with a densely packed monolayer of photon absorbing dye molecules and an electrolyte. Mechanism-oriented tools and studies are needed to understand how to reproducibly form an optimal dye monolayer on the TiO2 and how to make the DSSC fabrication process compatible with industrial demands. Langhammer’s group has done exactly that by using a new method to follow the dye impregnation process in detail.

The researchers use Hidden Interface-Indirect Nanoplasmonic Sensing (HI-INPS), a technique that uses the localized surface plasmon resonance of Au nanoparticles (coated with a thin dielectric layer). When illuminated with near-visible light, their sensitivity to dielectric changes. This sensitivity is short- ranged, typically within 50–100 nm from the sensor particle surface. Therefore if a thick layer of material, like mesoporous TiO2, is deposited onto such a sensor chip, the plasmonic Au sensor particles probe the hidden interface region between the sensor chip surface and the sample material. HI-INPS is a neat way to monitor the dye molecule adsorption without disturbing the DSSC.

They use a combination of quantitative experimental data for the time it takes the dye molecules to diffuse with a simple theoretical model incorporating fast adsorption and diffusion through the porous system, to get values for the effective diffusion coefficient in the porous structure. They have successfully demonstrated the HI-INPS technique in the context of DSSCs. The technique is very general and has a lot potential in other diffusion studies in nano- and microporous materials.

Read the paper here:

Diffusion and adsorption of dye molecules in mesoporous TiO2 photoelectrodes studied by indirect nanoplasmonic sensing
Viktoria Gusak, Leo-Philipp Heiniger, Vladimir P. Zhdanov, Michael Grätzel, Bengt Kasemo and Christoph Langhammer
DOI: 10.1039/C3EE42352B

By Prineha Narang

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)