Author Archive

Focus on: Engineering Advanced Biologics

Protein-based biologics are gaining tremendous interests in the biomedical field after several successful translations into commercialized products. To this end, key hurdles in the development of protein-based therapeutics need to be properly addressed first. One of the most prominent issues is the instability of protein therapeutics in vivo, which requires higher and more frequent doses. As a result, protein-based therapy can become prohibitive in cost and may pose potential safety risks. Engineering protein therapeutics using biomaterials offer unique strategies to solve this problem by prolonging the half-life and enhancing the efficacy of these. In this blog, we feature three articles published in Biomaterials Science recently on the topic of Engineering Advanced Biologics as therapeutic agents.

 

Intra-articular TSG-6 delivery from heparin-based microparticles reduces cartilage damage in a rat model of osteoarthritis

 

1. Multivalent conjugates of basic fibroblast growth factor enhance in vitro proliferation and migration of endothelial cells
Aline Zbinden, Shane Browne, Eda I. Altiok, Felicia L. Svedlund, Wesley M. Jackson and Kevin E. Healy
Biomater. Sci., 2018, Advance Article, DOI: 10.1039/C7BM01052D

The authors reported the chemical conjugation of basic fibroblast growth factor (bFGF) onto hyaluronic acid (HA). Such multivalent conjugates were envisioned to increase residence time in vivo, protect bFGF from enzymatic degradation, and enhance protein bioactivity. Using a small molecule linker (N-(ε-Maleimidocaproic acid) hydrazide), bFGF was successfully conjugated at two different protein-to-polymer ratios and their structures were confirmed by extensive physico-chemical characterization. Compared to bFGF alone, HA conjugated bFGF displayed enhanced activity to promote the proliferation and more interestingly, the scratch closure of human umbilical cord vein endothelial cells. It’s noteworthy that the protein-to-polymer ratio and the conjugate size are two key parameters that could be easily tuned to modulate the bioactivity of the conjugate.

 

2. Synergistic effects of hyaluronate – epidermal growth factor conjugate patch on chronic wound healing
Yun Seop Kim, Dong Kyung Sung, Won Ho Kong, Hyemin Kim and Sei Kwang Hahn
Biomater. Sci., 2018, Advance Article, DOI: 10.1039/C8BM00079D

Similar to the strategy discussed above, the authors also utilized the biocompatible HA as carrier to conjugate epidermal growth factor (EGF) which is otherwise labile in vivo. The enzymatic degradation and stability studies revealed the superior stability of EGF when conjugated with HA. In vitro, HA–EGF conjugate increased keratinocyte proliferation, VEGF secretion, and migration towards scratch closure when compared to EGF alone. In vivo, HA–EGF conjugates loaded HA patch closed the wound in a rat model by enhancing de novo ECM secretion and mitigating inflammatory response. Overall, those comprehensive studies demonstrated the significance of protein-HA conjugates in improving the therapeutic effects of protein biologics.

 

3. Intra-articular TSG-6 delivery from heparin-based microparticles reduces cartilage damage in a rat model of osteoarthritis
Liane E. Tellier, Elda A. Treviño, Alexandra L. Brimeyer, David S. Reece, Nick J. Willett, Robert E. Guldbergde and Johnna S. Temenoff
Biomater. Sci., 2018, Advance Article, DOI: 10.1039/C8BM00010G

Here, the authors aimed to improve the delivery of TNF-α-stimulated gene-6 (TSG-6) for treating osteoarthritis. Specifically, they focused on heparin, another glycosaminoglycan, as a carrier biomaterial for TSG-6 delivery. It was first discovered that N-desulfated heparin maintained the beneficial role in promoting the bioactivity of TSG-6. Microparticles were thus made from N-desulfated heparin followed by TSG-6 encapsulation. TSG-6 was able to be released and demonstrated significantly higher anti-plasmin activity compared to soluble TSG-6. In a rat medial meniscal transection model, treatment of TSG-6 delivered by N-desulfated heparin but not in soluble form resulted in similar cartilage thickness, volume and GAG level compared to uninjured cartilage. These results showcased the advantages of heparin based microparticle in preserving and enhancing the bioactivity of therapeutic TSG-6 protein.

 

All articles free to read until 24 May

 

About the webwriter

Yingfei XueYingfei Xue is a web writer for Biomaterials Science. Currently, he is a PhD candidate and graduate student researcher in Dr. Shilpa Sant lab at the University of Pittsburgh, USA. His research focus on nano-/micro-technology in novel heart valve therapy. Find him on Twitter: @Phil_Xue or connect him on ResearchGate

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Focus on: Engineered Hydrogels

Hydrogels represent one of the most important classes of biomaterials and have been widely used for drug/cell delivery, tissue engineering, and disease models due to their biocompatibility and biodegradability properties. Traditional bulk hydrogels often suffer from drawbacks such as limited injectability, lack of control over morphology, and low cell adherence. Therefore, hydrogels engineered via innovative biomaterial chemistry and biofabrication technologies aim to overcome these obstacles and hold the promise to translate hydrogel based therapy into clinical setting.

neural stem cells (NSCs) in cell therapy

This month we focus on three articles published in Biomaterials Science reporting the recent advances in engineered hydrogels as therapeutics, 3D printing platforms, and cell culture systems.

 

1. Protein-engineered hydrogels enhance the survival of induced pluripotent stem cell-derived endothelial cells for treatment of peripheral arterial disease
Abbygail A. Foster, Ruby E. Dewi, Lei Cai, Luqia Hou, Zachary Strassberg, Cynthia A. Alcazar, Sarah C. Heilshorn and Ngan F. Huang
Biomater. Sci., 2018, Advance Article
DOI: 10.1039/C7BM00883J

Cell therapies via direct cell transplantation often resulted in limited therapeutic effects due to low cell viability and retention. Therefore, the authors utilized the platform technology of injectable shear-thinning hydrogel (termed as SHIELD) to mitigate such problems. SHIELD consists of engineered recombinant protein and polyethylene glycol modified proline-rich peptide domains, and it promoted cell-matrix interaction to improve cell viability and retention. Additionally, SHIELD was further strengthened by thermoresponsive poly(N-isopropylacrylamide). The encapsulation of human induced pluripotent stem cell-derived endothelial cells in SHIELD protected cells from membrane damage caused by injection and augmented cell proliferation under hypoxia. In a rodent model of peripheral arterial disease, cell injection with SHIELD had significantly higher cell retention in vivo and further promoted microvessel formation to relieve ischemic insult when compared to saline control.

2. Applying macromolecular crowding to 3D bioprinting: fabrication of 3D hierarchical porous collagen-based hydrogel constructs
Wei Long Ng, Min Hao Goh, Wai Yee Yeong, May Win Naing
Biomater. Sci., 2018, Advance Article
DOI: 10.1039/C7BM01015J

It has been well recognized that scaffold architecture plays a critical role in determining the cellular behavior. Tradition hydrogels fabricated by freeze drying, solvent casting, and phase separation were often confined to less controllable architectures. Utilizing 3D bioprinting via drop-on-demand (DOD) technique, the authors printed 3D hierarchical porous collagen scaffolds with finely controlled  pore size and porosity . In this process, droplets of polyvinylpyrrolidone (PVP) were uniformly printed to facilitate the rapid and homogeneous cross-linking, enhance collagen fibrillogenesis, and tune the collagen architecture in a controlled manner. This printing strategy yielded a cytocompatible construct as demonstrated by a primary human dermal fibroblasts model.

3. Evaluation of RGD functionalization in hybrid hydrogels as 3D neural stem cell culture systems
Emanuele Mauri, Alessandro Sacchetti, Nunzio Vicario, Luca Peruzzotti-Jametti, Filippo Rossi and Stefano Pluchino
Biomater. Sci., 2018, Advance Article
DOI: 10.1039/C7BM01056G

To improve the stem cell based therapy for the repair and regeneration of central nervous system, the authors engineered hydrogels which composed of polyethylene glycol, agarose, and polyacrylic acid with cell-adhesive and cell-recognition Arg-Gly-Asp (RGD) motif. When interfacing with neural stem cells, the RGD modified hydrogels enabled a higher ratio of active proliferating cell population compared to a 2D laminin surface or non-RGD hydrogel throughout the 21 day in vitro culture. Additionally, the examination of conditioned media obtained from the in vitro culture revealed the higher level of nutrients contained in the RGD modified hydrogels group, indicating the superior biocompatibility of RGD modified hydrogel construct.

Read these articles for free until 19 March

 

About the webwriter

Yingfei XueYingfei Xue is a web writer for Biomaterials Science. Currently, he is a PhD candidate and graduate student researcher in Dr. Shilpa Sant lab at the University of Pittsburgh, USA.  His research focus on nano-/micro-technology in novel heart valve therapy. Find him on Twitter: @Phil_Xue  or connect with him on ResearchGate.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Focus on: Controlled micro-/nano-geometry

The geometry of micro- or nano-materials determine their physico-chemical properties and play crucial roles in directing an array of in vivo biological activities. Historically, the significance of micro-/nano-geometry for biomaterials has not been adequately appreciated due to the limitations in manufacturing techniques. Recent years have witnessed the exponential growth of micro-/nano-fabrication technologies which allow closer scrutiny of the relationship between the micro-/nano-geometry and the biological effects of materials. This month the focus is on three articles published in Biomaterials Science reporting the recent advances to achieve controlled micro-/nano-geometry of biomedical devices including microdisks, nanosheets, and microcapsules.

Focus on controlled micro/nano-geometry

1. Advanced manufacturing of microdisk vaccines for uniform control of material properties and immune cell function

Qin Zeng, Peipei Zhang, Xiangbin Zeng, Lisa H. Tostanoski and Christopher M. Jewell
Biomater. Sci., DOI: 10.1039/c7bm00520b

The heterogeneity in the geometry and loading level represents one major drawback of synthetic vaccine constructs. Therefore, taking advantage of the facile and flexible technique of soft lithography, the authors designed and fabricated PLGA microdisks with controllable dimension and payload loading. Compared to the conventional PLGA microparticles made by emulsion, microdisks possessed highly uniform diameter with less variation. Importantly, microdisks could safely co-deliver vaccine antigen and molecular adjuvants to primary dendritic cells. As a result, dendritic cells could be activated according to the composition of antigen and adjuvants. This controllable and programmable microdisk system will serve as platform to probe the relationship between the vaccine design parameters and immune responses in vivo.

2. The biodistribution, excretion and potential toxicity of different-sized Pd nanosheets in mice following oral and intraperitoneal administration

Xiaolan Chen, Jingchao Li, Yizhuan Huang, Jingping Wei, Duo Sun and Nanfeng Zheng
Biomater. Sci., 2017, 5, 2448. DOI: 10.1039/c7bm00769h

To elucidate the in vivo behaviors of Pd nanosheets (NSs), the authors synthesized size-specific Pd NSs (with 5 nm, 30 nm, or 80 nm in diameter) by controlling the chemical reaction conditions. Those NSs were then administrated via oral feeding or intraperitoneal injection to reveal different biodistribution, excretion, and toxicity profiles of those size-specific NSs. Interestingly, when intraperitoneally delivered, larger sized Pd NSs (80 nm) had higher accumulation in liver and spleen than the smaller sized Pd NSs (5 nm), which had higher accumulation in tumor tissue. In addition, the smaller sized NSs (5 nm) exhibited more excretion through urine than larger sized Pd NSs (30 and 80 nm). Overall, this study indicated that the size of nanomaterials could have significant influence on their biodistribution and bioavailability in vivo.

3. Development of drug-loaded polymer microcapsules for treatment of epilepsy

Yu Chen, Qi Gu, Zhilian Yue, Jeremy M. Crook, Simon E. Moulton, Mark J. Cook and Gordon G. Wallace
Biomater. Sci.,
2017, 5, 2159. DOI: 10.1039/c7bm00623c

To achieve the goal of developing controllable local delivery system for treating epilepsy, the authors developed drug-loaded PLGA based microspheroids, microspheres, and microfibers by tuning the solution concentration during electrojetting (electrospinning and/or electrospraying) process. All the resultant microcapsules had excellent shape and size uniformity with high controllability and low variance. Different microcapsule geometry led to various sustained drug release profiles in vitro without compromising their cytocompatibility. This study highlighted the potential of programmable and controllable delivery system and suggested the potential role of geometry in controlling the drug release profile of micron-sized biomedical device.

Read these articles for free until 3 February

About the webwriter

Yingfei XueYingfei Xue is a web writer for Biomaterials Science. Currently, he is a PhD candidate and graduate student researcher in Dr. Shilpa Sant lab at the University of Pittsburgh, USA.  His research focus on nano-/micro-technology in novel heart valve therapy. Find him on Twitter: @Phil_Xue  or connect with him on ResearchGate.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Focus on: Nanoparticle Delivery Systems

Developing nanoparticle formulations that can deliver drugs more effectively to the target sites with enhanced efficacy and reduced side effects has been an overarching goal in the field of nanobiotechnology. Dendrimers, micelles, and liposomes represent three major classes of nanoparticles that have shown promising results in drug delivery and bio-sensing.  Each type of nanoparticle has its own strengths and limitations in terms of the desirable payload, site of action, duration of action, release profile, and dosing frequency. Therefore, it is imperative to engineer these classical nanoparticle delivery systems for specific drug delivery application.

Nanoparticle delivery system

This month we focus on four articles published in Biomaterials Science reporting the recent advances in leveraging those different nanoparticle delivery systems for efficient, controlled, and targeted delivery of therapeutic agents.

1. Nucleobase-modified polyamidoamine-mediated miR-23b delivery to inhibit the proliferation and migration of lung cancer
Haobo Han, Jiebing Yang, Yudi Wang, Wenqi Chen, Jiawen Chen, Yan Yang and Quanshun Li
Biomater. Sci., 2017, 5, 2268. DOI: 10.1039/c7bm00599g

In the current study, the authors aimed to further improve the transfection efficiency and biocompatibility of conventional polyamidoamine (PAMAM) dendrimers. To this end, the surface of PAMAM was chemically modified with 2-amino-6-chloropurine. This modification further enhanced the carrier/DNA interaction via the fine balance of hydrogen bonding and electrostatic interaction. Compared to the prototype PAMAM, the modified PAMAM demonstrated higher transfection efficiency. In an in vitro model, this gene carrier delivered miR-23b, a potent anti-proliferative and anti-invasive agent, more efficiently into A549 cancer cells, indicating the potential of this carrier in cancer nanotherapy.

2. Novel poly(vinyl alcohol)-based amphiphilic nanogels by non-covalent boric acid crosslinking of polymeric micelles
Hen Moshe, Yuval Davizon, Maya Menaker Raskin and Alejandro Sosnik
Biomater. Sci., 2017, 5, 2295. DOI: 10.1039/c7bm00675f

Poor physical stability often presents as a major drawback for polymeric micelles. The authors addressed this issue by non-covalent crosslinking of a poly(vinyl alcohol) (PVA) based polymeric micelles system with boric acid. Compared to the non-crosslinked control, this novel micelles demonstrated improved physical stability under harsh environment. More interestingly, these micelles could be spray-dried and efficiently consolidated into dry powders which were able to regenerate back into the original nanoparticles upon re-dispersion. This non-covalently crosslinked micelles also maintained good mucoadhesiveness and cytocompatibility.

3. Codelivery of sorafenib and GPC3 siRNA with PEI-modified liposomes for hepatoma therapy
Weitong Sun, Yong Wang, Mingyue Cai, Liteng Lin, Xiaoyan Chen, Zhong Cao, Kangshun Zhu and Xintao Shuai
Biomater. Sci., 2017, 5, 2468. DOI: 10.1039/c7bm00866j

Combination therapy using chemotherapeutic drugs and siRNA represents a promising strategy that can potentially induce and/or enhance the synergistic anticancer effects. To overcome the individual drawbacks of sorafenib and gene therapy, the authors developed a PEI based liposome system which allow the co-delivery of GPC3 siRNA and hydrophobic sorafenib molecule. The drug loaded liposomal delivery system displayed enhanced anticancer effects by suppressing the expression of the anti-apoptotic GPC3 gene and the proliferative cyclin D1 gene simultaneously in human hepatocellular carcinoma (HCC) HepG2 cells. Further, the improved therapeutic effects of this delivery system was demonstrated in an in vivo xenograft model.

4. Dimeric camptothecin-loaded RGD-modified targeted cationic polypeptide-based micelles with high drug loading capacity and redox-responsive drug release capability
Zhaopei Guo, Xingzhi Zhou, Mengze Xu, Huayu Tian, Xuesi Chen and Meiwan Chen
Biomater. Sci., 2017, 5, 2501. DOI: 10.1039/c7bm00791d

To tackle the low bioavailability problem of camptothecin, the authors devised a novel polymeric micelles system composed of cationic polypeptide poly-lysine-block-poly-leucine, polyethylene glycol (PEG), and arginine-glycine-aspartic acid (RGD) peptide. The micelles system increased drug encapsulation efficiency, drug loading capacity, and physical stability of camptothecin. The RGD moiety further enhanced the intracellular uptake of micelles due to the cellular targeting capability of RGD sequence. Importantly, the drug loaded micelles effectively inhibited the proliferation of malignant MDA-MB-231 breast cancer cells by inducing cellular apoptosis and decreasing mitochondrial membrane potential.

Read these articles for free until 10 January 2018

About the webwriterYingfei Xue

Yingfei Xue is a web writer for Biomaterials Science. Currently, he is a PhD candidate and graduate student researcher in Dr. Shilpa Sant lab at the University of Pittsburgh, USA.  His research focus on nano-/micro-technology in novel heart valve therapy. Find him on Twitter: @Phil_Xue or connect with him on ResearchGate

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)