2022 Biomaterials Science Lectureship – Open for nominations

 Do you know an early-career researcher who deserves recognition for their contribution to the biomaterials field?

 

Biomaterials Science is pleased to announce that nominations are now being accepted for its 2022 Lectureship award and will close on 31 December 2021. This annual award was established in 2014 to honour an early-stage career scientist who has made a significant contribution to the biomaterials field.

 

Biomaterials Science Lectureship open for nominations

 

Eligibility

To be eligible for the lectureship, candidates should meet the following criteria:

  • Be an independent researcher, PhD students postdoctoral research associates are not eligible
  • Be actively pursuing research within the biomaterials field, and have made a significant contribution to the field
  • Be at an early stage of their independent career (this should typically be within 12 years of attaining their doctorate or equivalent degree, but appropriate consideration will be given to those who have taken a career break, work in systems where their time period to independence may vary or who followed an alternative study path)

 

How to nominate

Nominations must be made via email to biomaterialsscience-rsc@rsc.org, and include the following:

  • The name, affiliation and contact details of the nominee, nominator and referee
  • An up-to-date CV of the nominee (1 A4 page maximum length)
  • A letter of recommendation from the nominator (500 words maximum length)
  • A supporting letter of recommendation from a referee (500 words maximum length). This could be from the nominee’s postdoc, PhD supervisor or academic mentor for instance
  • The nominator must confirm that to the best of their knowledge, their nominee’s professional standing is as such that there is no confirmed or potential impediment to them receiving the Lectureship

Please note:

  • Self-nomination is not permitted
  • The nominee must be aware that he/she has been nominated for this lectureship
  • As part of the Royal Society of Chemistry, we have a responsibility to promote inclusivity and accessibility in order to improve diversity. Where possible, we encourage each nominator to consider nominating candidates of all genders, races, and backgrounds. Please see the RSC’s approach to Inclusion and Diversity.

 

Selection

  • All eligible nominated candidates will be assessed by a judging panel made up of the Biomaterials Science Editorial Board, any Editorial Board members with a conflict of interest will be ineligible for the judging panel.
  • The judging panel will consider the following core criteria:
    • Excellence in research, as evidenced in reference to originality and impact
    • Quality of publications, patents or software
    • Innovation
    • Professional standing
    • Independence
    • Collaborations and teamwork
    • Evidence of promising potential
    • Other indicators of esteem indicated by the nominator
  • In any instance where multiple nominees are judged to be equally meritorious in relation to these core criteria, the judging panel will use information provided on the nominee’s broader contribution to the chemistry community as an additional criterion. Examples of this could include: involvement with RSC community activities, teaching or demonstrating, effective mentorship, service on boards, committees or panels, leadership in the scientific community, peer reviewing, promotion of diversity and inclusion, advocacy for chemistry, public engagement and outreach.

 

Previous winners

2021 – Nasim Annabi, UCLA, USA

2020 – Kanyi Pu, Nanyang Technological University, Singapore

2019 – April Kloxin, University of Delaware, USA

2018 – Zhen Gu, University of North Carolina at Chapel Hill & North Carolina State University, USA

2017 – Zhuang Liu, Soochow University, China

2016 – Fan Yang, Stanford University, USA

2015 – Joel Collier, Duke University, USA

2014 – Suzie Pun, University of Washington, USA

2011 – Michael J. Solomon, University of Michigan, USA

 

Nominations deadline: 31 December 2021

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Biomaterials Science Emerging Investigator – Arghya Paul

Profile picture of Arghya Paul (black & white)

Arghya Paul is an Associate Professor and Canada Research Chair Tier II in Advanced Cell-Instructive Materials and Biotherapeutics at the University of Western Ontario. Professor Paul received his PhD in Biomedical Engineering from McGill University in 2012 and postdoctoral training at Harvard-MIT Division of Health Sciences and Technology, prior to starting his independent research career in 2014. His research program has been recognized by several awards including Province of Ontario’s Early Research Award (ERA), Wolfe-Western Fellowship, Canada Research Chair, Young Innovator Award from Cellular and Molecular Bioengineering (BMES), Fred Kurata Memorial Professorship. Paul’s Biointel Laboratory at Western focuses on design and development new bioactive materials originating from patient’s own cells, genes, proteins and tissues for diverse biomedical applications, including materials-driven tissue repair and regeneration. He can be found on Twitter @arghya_biointel.

 

Read Arghya’s Emerging Investigator article “Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances” and check out all of the 2021 Biomaterials Science Emerging Investigator articles here.

 

How do you feel about Biomaterials Science as a place to publish research on this topic?

Excellent place to publish high quality papers in the area on biomaterials research that offers high visibility.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Be bold to take strategic risks. Such risks, new opportunities and experiences will help you grow in new directions that your current roles do not offer.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Biomaterials Science Emerging Investigator – Tianyue Jiang

Profile picture of Tianyue Jiang

Tianyue Jiang obtained her Ph.D. degree in Pharmaceutics under the guidance of Prof. Jianping Zhou in the College of Pharmacy at China Pharmaceutical University. From 2012-2014, she was a visiting scholar in Prof. Zhen Gu’s research group in the Joint Department of Biomedical Engineering at the University of North Carolina at Chapel Hill and North Carolina State University. She is currently an associate Professor in the School of Pharmaceutical Sciences at Nanjing Tech University. Her group studies controlled drug delivery, bio-inspired materials and nanobiotechnology.

 

Read Tianyue’s Emerging Investigator article “Topical delivery of chemotherapeutic drugs using nano-hybrid hydrogels to inhibit post-surgical tumour recurrence” and check out all of the 2021 Biomaterials Science Emerging Investigator articles here.

 

How do you feel about Biomaterials Science as a place to publish research on this topic?

The journal is based on the design, function, interaction with the body and related scientific principles of biomaterials, covering the fields of chemistry, biology, pharmacy and materials science, and aims to explore new concepts, designs, functions and applications of biomaterials. I am honored to share my research works.

What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

My work focuses on the investigation and development of drug delivery systems based on peptide-based materials. Through the arrangement and combination of 20 kinds of natural amino acids and the introduction of exogenous functional groups, we can provide hundreds of millions of peptide molecules. The challenge lies in how to customize peptides with specific functions in a vast array of combinations.

In your opinion, what are the most important questions to be asked/answered in this field of research?

In my opinion, the most important question is how to effectively solve some interdisciplinary problems and technical bottlenecks in my research field of drug delivery.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Maintain enthusiasm and curiosity for scientific research.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Biomaterials Science Emerging Investigator – Thomas Werfel

Profile picture of Thomas Werfel

Thomas Werfel is Assistant Professor of Biomedical Engineering, Joint Assistant Professor of BioMolecular Sciences, and Affiliate Assistant Professor of Chemical Engineering at The University of Mississippi (UM). Dr. Werfel received his PhD in Biomedical Engineering from Vanderbilt University in 2017, after which he worked as a postdoctoral researcher in Cell and Developmental Biology at Vanderbilt University School of Medicine. In 2018, he joined the Biomedical Engineering Program at the University of Mississippi and is an inaugural faculty member of the Department of Biomedical Engineering at UM – founded in 2019. As a graduate student, Dr. Werfel was awarded the NSF Graduate Research Fellowship Program (GRFP) Fellowship. His tenure as a postdoctoral researcher was supported by the NIH F32 Postdoctoral Fellowship. His research has been published in cross-disciplinary journals from Biomaterials and Advanced Materials to PNAS and Cancer Research, and he was recently recognized as a Biomaterials Science Emerging Investigator in 2021. His research group at UM works at the interface of bioengineering, materials science, and molecular biology to engineer the medicines of the future. He can be found on Twitter @OleMiss_iNBS.

 

Read Thomas’ Emerging Investigator article “Immunostimulatory biomaterials to boost tumor immunogenicity” and check out all of the 2021 Biomaterials Science Emerging Investigator articles here.

 

How do you feel about Biomaterials Science as a place to publish research on this topic?

Biomaterials Science is without doubt a premier worldwide journal to publish broad areas of interdisciplinary research that leverages biomaterials.

What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

We are most excited about our work to leverage newly-discovered and/or recently characterized immunological processes to boost tumor immunogenicity using targeted, biomaterials-based strategies.

In your opinion, what are the most important questions to be asked/answered in this field of research?

Follow the immunology!! As we continue elucidating the function of the immune system, how can materials be used to modulate these processes toward therapeutic ends?

Can you share one piece of career-related advice or wisdom with other early career scientists?

Establish balance! You always come back refreshed and reinvigorated when you step away for a while – whether a day, a weekend, or a longer vacation.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Biomaterials Science Emerging Investigator – Evelyn Yim

Profile picture of Evelyn Yim

Evelyn Yim began her education at the University of Toronto, where she earned her BASc in Engineering Science and MASc in Chemical Engineering, under the supervision of Professor Michael Sefton. She pursued her PhD in Biomedical Engineering at Johns Hopkins University before conducting her post-doctoral training at the Johns Hopkins School of Medicine and, under Professor Kam Leong, in the Department of Biomedical Engineering at Duke University. Between 2007 and 2015 Evelyn worked in Singapore, where she held a joint appointment from the National University of Singapore, as faculty in the departments of Biomedical Engineering and Surgery, and the Mechanobiology Institute Singapore, a Research Center of Excellence supported by the National Research Foundation Singapore, as a principle investigator studying how chemical and biomechanical cues influence stem cell behavior. Evelyn Yim joined the University of Waterloo as an Associate Professor in 2016. Evelyn and her Regenerative Nanomedicine Lab group are interested to apply the knowledge biomaterial-stem cell interaction to direct stem cell differentiation and tissue regeneration for neural, vascular and corneal tissue engineering.

 

Read Evelyn’s Emerging Investigator article “Enhanced efficiency of nonviral direct neuronal reprogramming on topographical patterns” and check out all of the 2021 Biomaterials Science Emerging Investigator articles here.

 

What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

Excited: the field is moving very fast with a lot of new analytical technologies available

Challenging: getting funding.

In your opinion, what are the most important questions to be asked/answered in this field of research?

I think the mechanism of cell-materials interaction, including immune response and mechanobiology, is very important.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Try your best! But remember to keep a good work-life balance.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Biomaterials Science Emerging Investigator – Sidi Bencherif

Profile picture of Sidi Bencherif

Sidi A. Bencherif received two Master’s degrees in Physical Sciences (2000) and then in Materials Science and Engineering (2002) from the University of Montpellier in France. In 2002, he worked for 3 years as a guest researcher at the US National Institute of Standards and Technology (NIST). In 2009, he received a Master’s degree in Polymer Science and a PhD degree in Chemistry from Carnegie Mellon University. In 2009, he joined as a postdoctoral fellow the laboratory of David Mooney at Harvard University and has been appointed as an Assistant Professor of Chemical Engineering at Northeastern University since 2016. He can be found on Twitter @bencheriflab.

 

Read Sidi’s Emerging Investigator article “Engineering a macroporous fibrin-based sequential interpenetrating polymer network for dermal tissue engineering” which was featured on the front cover, and check out all of the 2021 Biomaterials Science Emerging Investigator articles here.

 

How do you feel about Biomaterials Science as a place to publish research on this topic?

I feel that Biomaterials Science is an outstanding journal to read about the latest advances in biomaterials research and to publish our work. Biomaterials Science is among one of the few journals where I find the most interdisciplinary and interesting work on biomaterials, tissue engineering, immunoengineering, and beyond.

What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

Currently, I am most excited about engineering advanced biomaterials to manipulate the fate of mammalian cells, especially immune cells. A challenge in this work is to control the extent of immunostimulation while achieving a beneficial outcome in a safe but also sustained and consistent fashion.

Can you share one piece of career-related advice or wisdom with other early-career scientists?

One piece of advice I have for other early career scientists is to not be afraid of failure. Many things you try won’t work, but that’s ok. We learn more from failure than from getting something right on the first try. Don’t be discouraged but rather learn from those mistakes, keep working as hard as you can, and everything is going to be all right.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Biomaterials Science Emerging Investigator – Anna Waterhouse

Profile picture of Anna Waterhouse

Dr Anna Waterhouse leads the Cardiovascular Medical Devices Group in the Faculty of Medicine and Health at the University of Sydney, Australia. Anna is an affiliated Group Leader at the Heart Research Institute and a member of the Charles Perkins Centre and Sydney Nano. She received her PhD from the University of Sydney and conducted her postdoctoral research at the Wyss Institute for Biologically Inspired Engineering at Harvard University. In 2016, she received a Discovery Early Career Researcher Award from the Australian Research Council and established her multidisciplinary group, focusing on biological interactions at material interfaces combined with cardiovascular medical device engineering, specializing in material thrombosis and bioinspired approaches to improve and design new medical devices and diagnostics. She can be found on Twitter @DrAnnaW_lab.

 

Read Anna’s Emerging Investigator article “Evaluating medical device and material thrombosis under flow: current and emerging technologies” and check out all of the 2021 Biomaterials Science Emerging Investigator articles here.

 

In your opinion, what are the most important questions to be asked/answered in this field of research?

One of the most important unanswered questions is how we can fully understand material thrombosis and harness advances in biomaterial development to create medical devices that cause minimal thrombosis, so anti-thrombotic drug use and severe bleeding can be reduced clinically.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Find something you’re passionate about to work on, so when the going gets tough, you’re still doing something you ultimately enjoy.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Biomaterials Science Emerging Investigator – Hua Wei

Profile picture of Hua Wei

Dr. Hua Wei has been a professor in the Department of Pharmacy and Pharmacology at the University of South China since 2019. He is currently the Director of Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study and the distinguished professor of Furong scholars in Hunan Province. He received B.S. and Ph.D. from Wuhan University. He later joined the University of Sydney as a postdoctoral fellow in 2010, and moved to the University of Washington in 2011 and worked with Prof. Suzie H. Pun for three years. He was a professor in the Department of Chemistry at Lanzhou University from 2014-2018. He is currently serving as an Editorial Advisory Board member for ACS Biomaterials Science and Engineering, a guest editor of Frontiers in Bioengineering and Biotechnology and Molecules, and has been selected as International Association of Advanced Materials (IAAM) Fellow. He has thus far published over 100 peer-reviewed papers with a total citation over 4000.

 

Read Hua’s Emerging Investigator article “Synthesis of cyclic graft polymeric prodrugs with heterogeneous grafts of hydrophilic OEG and reducibly conjugated CPT for controlled release” and check out all of the 2021 Biomaterials Science Emerging Investigator articles here.

 

How do you feel about Biomaterials Science as a place to publish research on this topic?

It is a great honour to publish a research paper on this topic in the esteemed leading journal, Biomaterials Science, considering the high reputation and quality of the journal in the field of biomaterials science and engineering.

What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

I am most excited about the excellent property and performance of cyclic topology-based materials for drug delivery applications, which may inspire more upcoming interesting studies. The most challenging I find about my research is the purification of target cyclic graft copolymers and improvement of the yield.

In your opinion, what are the most important questions to be asked/answered in this field of research?

The most important questions to be answered in the field of cyclic polymer-based biomaterials, in my opinion, lie in the precise synthesis and modulation of various cyclic topology-derived polymer architectures.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Thoughtful consideration is a prerequisite for scientific research.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Biomaterials Science Emerging Investigator – João Conde

Profile picture of Joao Conde

João Conde is an Assistant Professor and Group Leader at NOVA Medical School of Universidade Nova de Lisboa, ToxOmics, CEDOC. He received his PhD in Biology, specialty in NanoBiotechnology from the NOVA University and Universidad de Zaragoza in 2014, under the FP7 European Consortium NanoScieE+ – NANOTRUCK for the development of multifunctional gold nanoparticles for gene silencing. After, he was a Marie Curie Fellow at the Massachusetts Institute of Technology, Harvard-MIT Division for Health Sciences and Technology and in School of Engineering and Materials Science, Queen Mary University of London. From 2017 to 2019 he was a Junior Investigator at Instituto de Medicina Molecular. In 2019, he won an ERC Starting Grant to build a genetic biobarcode to profile breast cancer heterogeneity. He is also co-founder of the biotech company TargTex, Targeted Therapeutics for Glioblastoma Multiforme. Since 2020, he is also part of the Global Burden of Disease (GBD) Consortium from the Institute for Health Metrics and Evaluation (IHME), University of Washington. The main aspects related to the recognition and diffusion of his early contributions are: nearly 80 articles in journals of Cancer Therapy, Oncology, Nanotechnology/Materials Science and Biomedicine (Nature Materials, Nature Nanotechnology, Nature Communications, PNAS, Accounts of Chemical Research, Progress in Materials Science, ACS Nano, Advanced Materials, JACS, Angewandte Chemie, Advanced Functional Materials, Trends in Cancer, Trends in Biotech., Biomaterials, etc.), more than 30 articles are as 1st author and more than 30 articles as corresponding author and cited nearly 4900 times (h-index 36). Several of them have been selected as cover page of journals such as Nature Nanotechnology (COVID-19 Special Issue), Adv. Functional Materials, Trends in Cancer, JACS, Angewandte Chemie, ACS Central Science, ACS Sensors, Biomaterials Science, ACS Applied Bio Mat, Adv. Healthcare Materials, Analytical & Bioanalytical Chemistry and BioTechniques. Moreover, 6 international patents were submitted and approved, all with relevant developments in nanomaterials-based platforms for cancer therapy and diagnosis. He was also awarded with several international awards, including the Nanomaterials 2020 Young Investigator Award, the 2021 Biomaterials Science Emerging Investigator, the Top 2% Most cited in Nanoscience/Nanotechnology from PLOS Biology, the Wellcome Image Awards 2017, the Nano-Micro Letters Researcher Award, and the National Cancer Institute Image award. He can be found on Twitter @CNanoLab.

 

Read João’s Emerging Investigator article “Revisiting gene delivery to the brain: silencing and editing” and check out all of the 2021 Biomaterials Science Emerging Investigator articles here.

 

Can you share one piece of career-related advice or wisdom with other early career scientists?

“You have no responsibility to live up to what other people think you ought to accomplish. I have no responsibility to be like they expect me to be. It’s their mistake, not my failing.” – Richard P. Feynman

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Biomaterials Science Emerging Investigator – Jessica Weaver

Profile picture of Jessica Weaver

Dr. Jessica Weaver obtained her PhD in Biomedical Engineering at the University of Miami. She completed a postdoctoral fellowship at the Georgia Institute of Technology, where she was supported by the NIH ILET2 training grant and a JDRF Postdoctoral Fellowship. As an Assistant Professor in the School of Biological and Health Systems Engineering at Arizona State University, Dr. Weaver’s research centers on developing translatable cell-based therapies for the treatment of disease, with a focus on islet transplantation for the treatment of Type 1 Diabetes. The Weaver lab uses biomaterials and immunoengineering approaches with the aim to generate immunosuppression-free transplantation strategies. She can be found on Twitter @jdweaverBME.

 

Read Jessica’s Emerging Investigator article “Biomaterial-based approaches to engineering immune tolerance” and check out all of the 2021 Biomaterials Science Emerging Investigator articles here.

 

How do you feel about Biomaterials Science as a place to publish research on this topic?

I was honored to submit our review on biomaterial-based approaches to engineering immune tolerance to the Biomaterials Science 2021 Emerging Investigators Issue, as it is a high impact and widely-read journal in the biomaterials community, ensuring a broad readership of our work.

What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

Our lab is excited about our work in the area of engineering immune tolerance, where there is substantial room for growth and discovery in the use of biomaterials as tools to augment and control the immune response.

In your opinion, what are the most important questions to be asked/answered in this field of research?

The influence of biomaterials on the immune response has long been a critical aspect of biomaterials research. As we learn more about the mechanisms of immune cell responses to implanted materials, we are poised to make advancements in the use of materials to control and influence these responses. However, there are currently more questions than answers to how biomaterials influence these responses, and the next decade should be an exciting period of investigation and discovery into these biomaterial-influenced immune mechanisms.

Can you share one piece of career-related advice or wisdom with other early career scientists?

If I had one piece of advice for early career scientists, it would be to reiterate the advice given to me by my trusted mentors: pursue a portfolio of research ideas balanced in high risk/high reward and practicality. Pursue a balance of approaches achievable in the short and long term – this will hopefully maximize the impact of your work both now and in the future.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)