Emerging Contaminants – themed collection open for submissions

We are delighted to announce the launch of a new themed collection on emerging contaminants, guest edited by Analytical Methods Associate Editor Fiona Regan (Dublin City University), Leon Barron (King’s College London) and Sara Castiglioni (Istituto di Ricerche Farmacologiche Mario Negri).

Fiona ReganLeon BarronSara Castiglioni

Emerging contaminants are pollutants of growing concern. They are mainly organic compounds such as: pesticides, pharmaceuticals and personal care products, hormones, plasticizers, food additives, wood preservatives, laundry detergents, surfactants, disinfectants, flame retardants, and other organic compounds that were found recently in natural wastewater stream generated by human and industrial activities.

We invite primary research and review content focusing on analytical methods that can be used for sampling and pre-treatment for chemicals of concern, chromatographic and other separation methods, including high resolution screening, mass spectrometry for unknowns in samples, and also new column applications.

We acknowledge that current monitoring methods are infrequent and therefore new methods for measurement of CECs are being developed. These methods include chemical sensors and biosensors as well as passive sampling methods. This themed issue also invites papers on real applications to environmental (water, air, soil) and other samples (biological, micro plastics) to demonstrate the widespread occurrence of these chemicals and the challenges in addressing sample matrix analytically. A growing drive to develop effect based methods is emerging and the challenge of quantifying and addressing chemical cocktails will provide interest to the Analytical Methods audience also. 

If you are interested in submitting to this collection, please contact the Analytical Methods Editorial Office.

Submission deadline: 31st March 2020

Articles included in this collection will be published as they are accepted, and collated into an online collection. Please note all submitted manuscripts will be subject to peer review in accordance with the journal’s normal standards.


Read papers in our sister journals Environmental Science: Processes & Impacts and Environmental Science: Water Research & Technology on the topic of PFAS: rsc.li/pfas

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Bioanalytical sensors for real world applications- themed collection open for submissions

 

Analytical Methods has launched a themed collection focusing on bioanalytical sensors for real world applications.

This collection aims to publish papers in which sensors have been used to measure analytes in complex matrices, using robust technologies and with high sensitivity and specificity. The scope of this collection is intentionally broad to cover a broad range of applications both biomedical and environmental. Work which describes challenges in sensing of complex analytes or sensing analytes in complex matrices and how these challenges have been overcome is particularly welcome.

 

 

 

Guest Editors 

This collection is co-guest edited by Assistant Professor Charlie Mace (Tufts University, USA), Dr Aoife Morrin (Dublin City University, Ireland) and Associate Professor Rebecca Whelan (University of Notre Dame, USA).

Charlie Mace                                                  Aoife Morrin                                                     Rebecca Whelan

 

Submission deadline: 31st December 2019

 

Contribute to this collection

We welcome submissions of original research and review articles. Articles will be added to the collection as they are accepted and the resulting issue will benefit from extensive promotion.

About Analytical Methods

Guided by Editor-in-Chief Scott Martin and an international team of Associate Editors and Editorial Board members, Analytical Methods welcomes early applications of new analytical methods and technology demonstrating potential for societal impact. The journal requires that methods and technology reported in the journal are sufficiently innovative, robust, accurate, and compared to other available methods for the intended application. Developments with interdisciplinary approaches are particularly welcome. Systems should be proven with suitably complex and analytically challenging samples. For more information about the journal or its scope, please visit the journal website.

 

Interested in contributing?

Email methods-rsc@rsc.org

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Analytical Methods revised scope description

The scope of Analytical Methods has been revised to highlight that the journal welcomes early applications of new analytical methods and technology demonstrating potential for societal impact.

“Analytical Methods requires that methods and technology reported in the journal are sufficiently innovative, robust, accurate, and compared to other available methods for the intended application. Developments with interdisciplinary approaches are particularly welcome. Systems should be proven with suitably complex and analytically challenging samples.

We encourage developments within, but not limited to, the following technologies and applications:

  • global health, point-of-care and molecular diagnostics
  • biosensors and bioengineering
  • drug development and pharmaceutical analysis
  • applied microfluidics and nanotechnology
  • omics studies, such as proteomics, metabolomics or glycomics
  • environmental, agricultural and food science
  • neuroscience
  • biochemical and clinical analysis
  • forensic analysis
  • industrial process and method development”

The updates relate to the need for systems to be proven with suitably complex and analytically challenging samples and we also highlight some of the technologies and applications that the journal is interested in.

A final update is that the previous requirement for a societal impact statement has now been removed and this will be replaced by a requirement for a short (1-2 sentences long) significance statement for authors to highlight the technological advance and/or significance of the methods and applications in each submitted manuscript.

Any queries regarding these changes should be directed to the Analytical Methods Editorial Office at methods-rsc@rsc.org. 

Submit your next manuscript to Analytical Methods!

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigators Series – Ashu Agarwal

We are delighted to introduce our latest Analytical Methods Emerging Investigator, Ashu Agarwal.

 

Ashu Agarwal is an Assistant Professor of Biomedical Engineering and Associate Director of the Dr. John T Macdonald Foundation Biomedical Nanotechnology Institute at the University of Miami. His undergraduate degree from Indian Institute of Technology, and his PhD from University of Florida are both in Materials Science and Engineering. He then gathered postdoctoral research experience in Biomedical Engineering at Columbia University, and at the Wyss Institute for Biologically Inspired Engineering at Harvard University. The mission of his Physiomimetic Microsystems Laboratory at the University of Miami is to develop human relevant organ mimic platforms for discovery of therapies and drugs, for modeling of disease states, for conducting mechanistic studies, and for differentiation, maturation and evaluation of stem cells. The lab is supported by multiple NIH consortium grants, early stage commercialization grants from Wallace H. Coulter Foundation, and a sponsored research project from Mallinckrodt Pharmaceuticals.

Read Ashu’s Emerging Investigator Series paper ‘Integrated platform for operating and interrogating organs-on-chips‘ and find out more about him in the interview below.

1. Your recent Emerging Investigator Series paper focuses on an integrated platform for the operation and interrogation of organs-on-a-chip. How has your research evolved from your first article to this most recent article?

My graduate work focused on developing nanorobots from biomolecular motors (kinesin) and associated filaments (microtubules). It led to very cool science and good quality papers. I started developing organ on chip applications during my postdoc at Harvard. The first article from my own research lab described a strategy to develop large volume fluidic chips constructed from inert plastic materials (completely PDMS-free) that are reversibly sealed, and ideally suited for organoid and spheroid cultures (Lab on a Chip, 2017, 17, 772 – 781). The article was highlighted as cover and selected as ‘top hot’ article based on peer-review scores. This recent article (Analytical Methods, 2019, 11, 5645 – 5651) describes the development of the hardware ecosystem that a user often needs to operate organ chips. While designing robust organ chips for culturing organoids/spheroids/islets is a major thrust area in my lab, it also important to remove barriers to operate and interrogate those chips using integrated hardware control systems.

 

2. What aspect of your work are you most excited about at the moment?

Through two recent awards from the NIH, we are embarking on creating human relevant models of two very different diseases: replicating the human islet-immune interactions that lead to type 1 diabetes, and phenotyping the circulating tumor cells and exosomes that lead to metastatic dissemination of breast cancer.

3. In your opinion, what are the key design considerations for developing effective platforms for simple operation of organs-on-a-chip?

Often, hooking up organ chips to pumps, valves and switches at the inflow, and effluent fraction collectors at the outflow, becomes an impediment to the adoption of chip technology by disease biology labs or pharmaceutical industry. An integrated fluid handling platform with associated computer program should help remove those barriers. In addition, an effective fluid platform would also allow integration with imaging platforms, easy connection and detachment of the chip, and reversible access to biological constructs.

4. What do you find most challenging about your research?

Finding the balance between over-designing features (a common engineering trap in academic labs), and not embedding enough functionality for the technology to be useful for the intended end-users.

5. How do you spend your spare time?

I love reading non-fiction, usually biographies, or stories/case-studies of companies and institutions.

 

6. Which profession would you choose if you were not a scientist?

I never thought I would be a scientist. Either a heavy machinery operator, or an offensive linemen, or an entrepreneur. Hopefully, none of those options are still off the table!

7. Can you share one piece of career-related advice or wisdom with other early career scientists?

Create a microenvironment where innovation is celebrated. Keep telling your troops that they can achieve anything they set their minds to; because they often can.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Congratulations to Associate Editor, Zhen Liu!

2020 Advances in Measurement Science Lectureship WinnerZhen Liu

Analytical Methods would like to congratulate our Associate Editor, Professor Zhen Liu (Nanjing University, China), on being selected as one of the 2020 Advances in Measurement Science Lectureship winners. The prize will be presented to him at Pittcon conference in Chicago, March 1st – 5th, 2020.

Zhen is Distinguished Professor at Nanjing University, China. He obtained his PhD from Dalian Institute of Chemical Physics, Academy of Sciences of China in 1998. After post-doctoral training at Hyogo University (former Himeji Institute of Technology) in Japan as a JPSP scholar (2000-2002) and at the University of Waterloo in Canada (2002-2005), he joined Nanjing University as a Full Professor in 2005. He was appointed as Adjunct Professor at the University of Waterloo (2011-2014). He was awarded the National Science Fund for Distinguished Young Scholars (2014). His research interests include separation science, affinity materials, molecular imprinting, bioassays, single cell analysis, hyphenated analytical approaches, and nanomaterials for cancer therapy. He is particularly interested in integrating multidisciplinary knowledge, expertise and skills to overcome challenges in life science, such as disease diagnosis and cancer therapy.

Please join us in congratulating Zhen on this achievement!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Top 10 most downloaded Analytical Methods articles from April – June 2019

Check out these recent Analytical Methods articles, which were the most downloaded between April and June 2019.

The articles have all been made free to read for the next month. Let us know what you think of them, either in the comments below or on twitter @methodsrsc!

 

Reviews

Carbon quantum dots: synthesis, properties, and sensing applications as a potential clinical analytical method

Saipeng Huang, Wenshuai Liu, Pu Hahn, Xin Zhou, Jiewei Cheng, Huiyun Wen and Weiming Xue

Anal. Methods, 2019,11, 2240-2258

DOI: 10.1039/C9AY00068B

 

Methods for the detection of reactive oxygen species

Yinfeng Zhang, Menghong Dai and Zonghui Yuan

Anal. Methods, 2018,10, 4625-4638

DOI: 10.1039/C8AY01339J

 

Communications

Emerging patterns in the global distribution of dissolved organic matter fluorescence

Anal. Methods, 2019,11, 888-893

DOI: 10.1039/C8AY02422G

 

Papers

A methodology for the fast identification and monitoring of microplastics in environmental samples using random decision forest classifiers

Benedikt Hufnagl, Dieter Steiner, Elisabeth Renner, Martin G. J. Lӧder, Christian Laforsch and Hans Lohninger

Anal. Methods, 2019,11, 2277-2285

DOI: 10.1039/C9AY00252A

 

Analytical determination of heroin, fentanyl and fentalogues using high-performance liquid chromatography with diode array and amperometric detection

Hadil M. Elbardisy, Christopher W. Foster, Loanda Cumba, Lysbeth H. Antonides, Nicolas Gilbert, Christopher J. Schofield, Tarek S. Belal, Wael Talaat, Oliver B. Sutcliffe, Hoda G. Daabees and Craig E. Banks

Anal. Methods, 2019,11, 1053-1063

DOI: 10.1039/C9AY00009G

 

Chemical analysis using 3D printed glass microfluidics

Eran Gal-Or, Yaniv Gershoni, Gianmario Scotti, Sofia M. E. Nilsson, Jukka Saarinen, Ville Jokinen, Clare J. Strachan, Gustav Boije af Gennäs, Jari Yli-Kauhaluoma and Tapio Kotiaho

Anal. Methods, 2019,11, 1802-1810

DOI: 10.1039/C8AY01934G

 

Using castor oil to separate microplastics from four different environmental matrices

Thomas Mani, Stefan Frehland, Andreas Kalberer and Patricia Burkhardt-Holm

Anal. Methods, 2019,11, 1788-1794

DOI: 10.1039/C8AY02559B

 

A switch-on fluorophore using water molecules via hydrogen bonding and its application for bio-imaging of formaldehyde in living cells

Yile Wang, Yifan Chen, Yan Huang, Qi Zhang, Yucang Zhang, Jianwei Li and Chunman Jia

Anal. Methods, 2019,11, 2311-2319

DOI: 10.1039/C9AY00281B

 

Technical Briefs

The correlation between regression coefficients: combined significance testing for calibration and quantitation of bias

Analytical Methods Committee

Anal. Methods, 2019,11, 1845-1848

DOI: 10.1039/C9AY90041A

 

Why do we need the uncertainty factor?

Analytical Methods Committee

Anal. Methods, 2019,11, 2105-2107

DOI: 10.1039/C9AY90050K

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigators Series – Meng Liu

We are delighted to introduce our latest Analytical Methods Emerging Investigator, Meng Liu!

Meng Liu obtained a Ph.D. in Environmental Engineering from Dalian University of Technology in 2012. He was a postdoctoral fellow co-supervised by Dr. Yingfu Li and Dr. John Brennan at McMaster University between 2013 and 2017. He is now a Professor in the School of Environmental Science and Technology at the Dalian University of Technology. His research interests include functional DNAs and paper-based analytical devices.

Read Meng’s Emerging Investigator Series paper “Graphene oxide-circular aptamer based colorimetric protein detection on bioactive paper” and find out more about him in the interview below.

 

 

 

 

 

Your recent Emerging Investigator Series paper focuses on graphene oxide-circular aptamer based colorimetric protein detection on bioactive paper. How has your research evolved from your first article to this most recent article?

Previously, we report on the first effort to select circular aptamers for proteins (Angew. Chem. Int. Ed. 2019, 58, 8013). However, a great challenge that remains is how to design a biosensing platform that are highly compatible with this circular aptamer and broadly applicable for wide ranging targets.

 

What aspect of your work are you most excited about at the moment?

The circular aptamer can help us to improve the specificity of the sensor.

 

In your opinion, what are the key design considerations for developing a graphene oxide-circular aptamer based assay for colorimetric protein detection on bioactive paper?

The sequence of the circular aptamer should be carefully designed.

 

What do you find most challenging about your research?

How to turn data into knowledge and product.

 

How do you spend your spare time?

Reading and sporting.

 

Which profession would you choose if you were not a scientist?

Doctor.

 

Can you share one piece of career-related advice or wisdom with other early career scientists?

The question mark is the key to any science.

 

If you’d like to read other papers in the Emerging Investigators Series, please visit our website.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New themed collection: Electrochemistry for health applications

We are delighted to draw your attention to the recent Analytical Methods themed collection highlighting work on electrochemistry for health applications. This collection focuses electrochemical sensing, biosensing and applications in diagnostics and monitoring, and neuroelectrochemistry. 

This collection was put together by Guest Editors Jill Venton (University of Virginia, USA), Craig Banks (Manchester Metropolitan University, UK) and Tony Killard (University of West England, UK), who worked hard to create this issue and ensure that its content was of the highest quality. An Editorial by the Guest Editors prefaces the collection.

Read the full collection now: https://rsc.li/electrochem-for-health

All papers in the collection are free to access until the end of July 2019 with an RSC Publishing Account.

We hope you enjoy reading the full collection. Take a look at a small selection of excellent articles featured in the collection below:

Critical Review
Susana Campuzano, María Pedrero, Araceli González-Cortés, Paloma Yáñez-Sedeño and José M. Pingarrón

Critical Review
Yangguang Ou, Anna Marie Buchanan, Colby E. Witt and Parastoo Hashemi

Minireview
Nianzu Liu, Zhenying Xu, Aoife Morrin and Xiliang Luo

Paper
Jimin Yang, Xuesong Yin and Wei Zhang

Paper
Ling Li, Wuhua Guo, Yao Lin, Dianping Tang and Jingfeng Liu

Paper
Joseph M. Siegel, Kelci M. Schilly, Manjula B. Wijesinghe, Giuseppe Caruso, Claudia G. Fresta and Susan M. Lunte

Guest Editors (left to right): Craig Banks, Tony Killard and Jill Venton

Keep up to date with Analytical Methods throughout the year by signing up for free table of contents alerts and monthly e-newsletters.
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigators Series – Alexander Zestos

We are delighted to introduce our latest Analytical Methods Emerging Investigator, Alexander Zestos!

Alexander Zestos is a Greek-American from Williamsburg, VA. He completed a BS/MS degree in Chemistry from the College of William and Mary in Williamsburg, VA in 2008. There, he performed research with Dr. William H. Starnes, Jr. on the use of metal-clay additives and ester thiols to promote the smoke suppression, fire retrardance, and thermal stability of poly(vinyl chloride). He completed his PhD in Chemistry in 2014 at the University of Virginia, where he worked with Dr. Jill Venton and investigated the use of alternative carbon nanomaterials for enhanced neurochemical detection using fast scan cyclic voltammetry. From 2014-2017, he was a postdoctoral research fellow in the Departments of Chemistry and Pharmacology at the University of Michigan and was co-mentored by Professors Robert T. Kennedy and Margaret E. Gnegy. There, he developed microdialysis and liquid chromatography-mass spectrometry assays to measure neurochemical dynamics in rats after the administration of amphetamine and cocaine. He also developed the use of protein kinase C (PKC) inhibitors as novel therapeutics for amphetamine abuse in addition to measuring acetylcholine release from beige fat adipocytes and the neurochemical biomarkers of epileptic seizures. Since 2017, he is an Assistant Professor in the Department of Chemistry and Center for Behavioral Neuroscience at American University in Washington, D.C., where he develops electrochemical methods and electrode materials to enhance neurotransmitter detection for a wide variety of applications.

Read Alexander’s Emerging Investigator series paper “Polymer modified carbon fiber-microelectrodes and waveform modifications enhance neurotransmitter metabolite detection” and find out more about him in the interview below:

Your recent Emerging Investigator Series paper focuses on carbon-fiber microelectrodes and waveform modifications for the detection of neurotransmitter metabolites. How has your research evolved from your first article to this most recent article?
My research has evolved greatly over time. As a BS/MS student at the College of William and Mary, I investigated the development of smoke suppressants, fire retardants, and thermal stabilizers for poly(vinyl chloride). As a PhD student at the University of Virginia, I became more interested in research that could be used for biomedical applications. I utilized alternative carbon nanomaterials as electrodes for enhanced neurochemical detection with fast scan cyclic voltammetry (FSCV). As a postdoctoral research fellow in the Departments of Chemistry and Pharmacology at the University of Michigan, I used in vivo microdialysis coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to detect multiple neurotransmitters in vivo and measure the effects of PKC inhibitors on amphetamine-stimulated dopamine efflux. We were able to measure over 30 neurochemicals simultaneously in freely behaving animals, which had many applications for studying drugs of abuse, obesity, and epilepsy. At American University, I am combining the use of voltammetry, HPLC, and other methods to enhance neurochemical detection that is applicable to studying the effects of many drugs and behavioural states.

What aspect of your work are you most excited about at the moment?
I am excited by many projects. Currently, we are developing methods of neurochemical enhancement with carbon fiber-microelectrodes to study neurochemical dynamics in diabetic zebrafish and the effect of cathinone bath salts in rats. Moreover, we are also using carbon nanomaterials such as carbon nanotube yarns and polymer coatings to enhance neurochemical sensitivity, temporal resolution, and promote anti-fouling properties. My research continues to be at the interface of materials science, analytical measurements, and biomedical applications.

In your opinion, what are the key design considerations for developing novel electrode materials and waveforms for the detection of biomolecules?
The key design considerations for developing novel electrode materials and waveforms are to tune the electrode material selectively to each respective analyte. For this paper, we applied positively charged polymer coatings and removed the negative holding potential in order to enhance DOPAC detection, which is negatively charged at a physiological pH. The detection of other analytes such as dopamine, serotonin, norepinephrine, and others can be enhanced with other coatings and waveform modifications that are specific to each neurotransmitter being detected taking into account size, charge, chemical structure, and other considerations.

What do you find most challenging about your research?
In my opinion, the most challenging part of my research is continuous trial and error and overall complexity. However, this can also be the most rewarding aspect of research when an unexpected discovery is made. Reproducibility is also key in making and testing microelectrodes to measure neurochemical dynamics in small brain regions.

How do you spend your spare time?
I enjoy the outdoors, sports, traveling, and spending time with my family.

Which profession would you choose if you were not a scientist?
I most likely would be a physician or diplomat. I always considered myself to by a people-person and enjoy traveling, which is a big part of being a scientist.

Can you share one piece of career-related advice or wisdom with other early career scientists?
I would recommend pursuing your passion, yet being able to adapt to new circumstances, and to be continually persistent in your work. There will always be ups and downs in your research, but it is important to remain focused on the long-term goals of your career.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Outstanding Reviewers for Analytical Methods in 2018

We would like to highlight the Outstanding Reviewers for Analytical Methods in 2018, as selected by the editorial team, for their significant contribution to the journal. The reviewers have been chosen based on the number, timeliness and quality of the reports completed over the last 12 months.

We would like to say a big thank you to those individuals listed here as well as to all of the reviewers that have supported the journal. Each Outstanding Reviewer will receive a certificate to give recognition for their significant contribution.

Dr Prashanth Adarakatti, P. C. Jabin Science College ORCiD: 0000-0002-9049-4862

Dr Liu Dingbin, Nankai University ORCiD: 0000-0003-4153-9822

Professor Qiong Jia, Jilin University ORCiD: 0000-0002-0020-4180

Dr Edward Randviir, MMU ORCiD: 0000-0001-7252-8494

Dr Xueguang Shao, Nankai University ORCiD: 0000-0001-5027-4382

We would also like to thank the Analytical Methods board and the analytical chemistry community for their continued support of the journal, as authors, reviewers and readers.

 

If you would like to become a reviewer for our journal, just email us with details of your research interests and an up-to-date CV or résumé.  You can find more details in our author and reviewer resource centre

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)