Archive for May, 2019

Organic & Biomolecular Chemistry welcomes new Associate Editor Elizabeth Krenske

New OBC Associate Editor Elizabeth Krenske

We are delighted to welcome Dr Elizabeth Krenske to the OBC team as an Associate Editor. Elizabeth is an Associate Professor at the University of Queensland, Australia, where her research focuses on the computational study of organic reactions and modelling of drug molecules and interactions.

After starting out her career in chemistry as an undergraduate at the University of Queensland, Elizabeth undertook a PhD in the field of synthetic main-group chemistry at The Australian National University’s Research School of Chemistry, under the supervision of Professor S. Bruce Wild. She spent a further two years carrying out postdoctoral research at the Australian National University, before receiving a Fulbright Scholarship and commencing postdoctoral studies at UCLA with Ken Houk. Elizabeth returned to Australia in 2009 as an Australian Research Council (ARC) Australian Postdoctoral Fellow at the University of Melbourne, and moved to The University of Queensland in 2012 as an ARC Future Fellow. She is currently an Associate Professor and Strategic Research Fellow in the University of Queensland School of Chemistry and Molecular Biosciences. To find out more about Elizabeth and her research, visit her webpage or browse some of her recent publications below.

 

Elizabeth’s recent publications:

 

The fate of copper catalysts in atom transfer radical chemistry

Polym. Chem., 2019, 10, 1460-1470

 

Asymmetric synthesis of multiple quaternary stereocentre-containing cyclopentyls by oxazolidinone-promoted Nazarov cyclizations

Chem. Sci., 2018, 9, 4644-4649

 

Synthesis of spirocyclic orthoesters by ‘anomalous’ rhodium(II)-catalysed intramolecular C–H insertions

Org. Biomol. Chem., 2018, 16, 256-261

 

Claisen rearrangements of benzyl vinyl ethers: theoretical investigation of mechanism, substituent effects, and regioselectivity

Org. Biomol. Chem., 2017, 15, 7887-7893

 

An unprecedented stereoselective base-induced trimerization of an α-bromovinylsulfone

Org. Biomol. Chem., 2017, 15, 5529-5534

 

Submit your research to Elizabeth now!
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

OBC Highlight: A new atom and mass efficient synthetic route for tamoxifen

Nowadays, chemists are increasingly interested in revealing simpler methodologies for the synthesis of various drugs with high selectivity and purity. Transition metal catalysis has opened a wide window for the synthesis of different natural products and drugs with greater ease.

Z-Tamoxifen is one such drug, which is used in the treatment of breast cancer. Although there are many well-established synthetic procedures for the synthesis of Z-tamoxifen by various research groups such as T. Stiidemann et.al. and P. L. Coe et.al. etc., there are disadvantages to current methods, such as the use of multiple synthetic steps and generation of stoichiometric amounts of waste. Thus, there is a need to overcome these drawbacks.

In their recent OBC publication, Prof. Ben L. Feringa et.al. of Stratingh Institute for Chemistry, University of Groningen, Nijenborgh develop a fantastic two step protocol for the synthesis of Z-tamoxifen from commercially available starting materials. Usually, the transmetallation of anions formed by carbolithiation of (diphenyl)acetylenes with magnesium, boron, zinc or aluminium results in an active cross coupling partner, but with low atom efficiency. Here, Feringa et.al., for the first time proposed the direct cross coupling of the formed organolithium reagent with aryl halides in the presence of an active palladium nanoparticle based catalyst, cutting down the number of synthetic steps required to two, with excellent selectivities and yields. They report the thorough screening of reaction conditions such as solvent, temperature, catalyst loading etc. and explain the effect of various reaction parameters. The 0.67 atom economy and 22% RME achieved in the study is twice as good as the previously reported best protocol, and the scientists found that THF gave the desired product without encouraging any side reactions. Another advantage of this reaction is that the formed side product (lithium halide) can be easily removed.

Hence, Prof. Ben L. Feringa laid a new efficient pathway for the synthesis of biologically important Z-tamoxifen through his works.

Read their full article now.

 

About the Blog Writer: A. Vamshi Krishna is currently pursuing a PhD  in Organic chemistry with Prof. D. B. Ramachary at University of Hyderabad. His research mainly focuses on asymmetric supramolecular catalysis and organocatalysis, where he synthesises highly functionalized biologically active novel scaffolds with excellent selectivities and yields. He is passionate about scientific writing.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)