Archive for April, 2016

Balticum Organicum Syntheticum (BOS) conference 2016

Balticum Organicum Syntheticum (BOS) conference 2016

3rd – 6th July 2016, Riga, Latvia

Organic & Biomolecular Chemistry and Natural Product Reports are pleased to support the 2016 BOS conference.  The conference aims to provide a forum for organic synthetic chemists to speak of their work and discuss important scientific problems and to promote discussion between academic and industrial scientists about the possibilities of mutual cooperation.

This international conference has a balanced program of academic and industrial speakers presenting fundamental and practical aspects of organic synthesis.  This year the speakers include:

  • Emily Balskus (Harvard University, USA) Chemical Discovery in the Microbial World
  • Inga Cikotiené (Vilnius University, Lithuania) From Curiosity to Development of New Synthetic Methods
  • Nuno Maulide (University of Vienna, Austria) Catalytic Rearrangements: Inspiration for Methods and Total Synthesis
  • Per-Ola Norrby (AstraZeneca, Sweden) Predictive Chemistry: Virtual Screening in Asymmetric Catalysis
  • Virgil Percec (University of Pennsylvania, USA) A Materials Genome Approach to Mimics of Biological Membranes and their Programmable Glycan Ligands
  • Stefan Schunk (Grünenthal GmbH, Germany) Cebranopadol, A Novel Analgesic – It’s Discovery from the MedChem Perspective
  • Ryan Shenvi (The Scripps Research Institute) Chemical Synthesis of Secondary Metabolites
  • John Sutherland (MRC Laboratory of Molecular Biology, Cambridge UK) Origins of Life Systems Chemistry
  • Māris Turks (Riga Technical University, Latvia) Sulfer Dioxide: Useful Reagent and Solvent in Organic Chemistry

For more information and to register please visit the website.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

XXVIII International Carbohydrate Symposium 2016

XXVIII International Carbohydrate Symposium 2016

17th – 21st July 2016, New Orleans, Louisiana USA

Organic & Biomolecular Chemistry are pleased to support the 28th International Carbohydrate Symposium.  The conference will feature an excellent range of speakers including:

  • Carolyn Bertozzi (Stanford University and Howard Hughes Medical Institute) – Glycocalyx engineering toward probing cancer glycome evolution
  • Vincent Bulone (University of Adelaide) – A journey into the world of Eukaryotic cell walls: structure and biosynthesis of essential polysaccharides
  • Bruce Hamaker (Purdue University) – Carbohydrate quality and how the concept may relate to healthier foods
  • Koichi Kato (Nagoya City University) – Structural views of glycen-dependent determination of glycoprotein fates in cells
  • Muthiah Manoharan (Alnylam Pharmaceuticals) – Carbohydrate Conjuated RNAi Therapeutics
  • James C Paulson (The Scripps Research Institute) – Sialic acids determinants of self
  • Soledad Penades (Centro de Investigacion Cooperativa en Biomateriales, CIC biomaGUNE) – Glycans and Glyconanotechnology
  • Stephen G Withers (University of British Columbia) – Accessing new and improved CAZymes through metagenomics and directed evolution

For more information and to book your place please visit the website.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Continuous Flow Processes as an Enabling Technology in Synthesis

Recent advancements in reaction control and method development strategies have significantly impacted the way in which synthetic chemistry is performed. Arguably, one of the most widely amenable and enabling technologies is continuous flow chemistry, which can offer advantages over batch in terms of cost, reaction efficiency and safety. Its implementation is changing the way in which we think about and conduct chemistry and in some areas has expanded our synthetic capabilities.

As a result, numerous syntheses of commercially and pharmaceutically relevant compounds are being redesigned around flow processes in order to improve efficiency and reproducibility. In addition, the flow reactor configuration can be readily customized to meet specific reaction demands.

These changes are most evident within the pharmaceutical industry where increasing pressure to continually identify and optimize lead compounds has renewed interest in the development of sustainable and cost effective processes for both research and production purposes.1

A direct example of this comes from Prof. Ian Baxendale’s laboratory at Durham University.2 Heterocyclic motifs are prevalent in pharmaceuticals and have constituted one of the largest areas of research in organic chemistry. Through a convenient telescope continuous flow process, ethyl isocyanoacetate—a highly sensitive and reactive compound frequently used as a key building block in heterocycle synthesis—was generated in situ and used to synthesize diverse heterocyclic structures in a convergent manner.

General reaction scheme for the muti-step flow synthesis of 1,2,4-triazole and pyrrole[1,2-c]pyrimidine-based heterocycles.

Continuous flow limits issues related to hazardous exothermic processes, reaction scale-up and handling of highly reactive or toxic intermediates, overcoming numerous safety concerns inherent in batch chemistry. Furthermore, flow chemistries have also been combined with additional features such as microwave irradiation, solid-supported reagents or catalysts, photochemistry, inductive heating and electrochemistry, which greatly increase its application in synthetic organic chemistry.3,4

Significant developments within the last decade indicate that the full potential of flow chemistry has yet to be realized. As with any new up-and-coming technology, there exist limitations that more and more researchers are willing to tackle. This is evident in the prevalence of flow systems now being utilized not only within academic laboratories but also in industrial institutions.

Interesting and innovative examples of synthetic reactions translated to flow systems have recently been published in Organic and Biomolecular Chemistry and can also be found in the joint OBC/ChemComm collection ‘Recent Advances in Flow Synthesis and Continuous Processing’. Select examples are discussed below.


Establishing a multistep continuous flow process is a logical step forward in the development of flow technology. However, genuine applications remain limited due to inherent challenges such as solvent incompatibility, intermediate work-up and dilution effects. Prof. Floris Rutjes and his coworkers at Radboud University have provided a solution to this problem.5 They effectively integrated a two-step chemoenzymatic flow synthesis of incompatible reaction steps through the use of an inline liquid-liquid separation module.

Two step synthesis of cyanohydrins and schematic representation of the flow set up with integrated liquid-liquid phase separation module.

Homogenous metal catalysis has seen limited use in industrial processes due to difficult separation from product material and troublesome recovery of precious metals. To remedy this, an immobilised iridium hydrogen transfer catalyst was developed by Prof. Ian Baxendale and coworkers for use in flow based systems by incorporation of a ligand to a porous polymeric monolithic flow reactor, which limits metal leaching and catalyst deactivation.6

A monolith reactor testing configuration using immobilized iridium hydrogen transfer catalyst.

Finally, Prof. Bradely Pentelute and his group at the Massachusetts Institute of Technology very recently reported an efficient continuous-flow system for the challenging synthesis of peptides containing perfluoroaromatic molecules in place of labile disulfide bonds.7 Application of a rapid flow-based solid-phase peptide synthesis allowed the researchers to circumvent previously encountered problems associated with this chemistry and has resulted in an overall improvement in quality and isolated yield of the peptides.

Flow system for the synthesis of H2 relaxin fragment analogues using modified solid-phase peptide synthesis

To find out more see:

1 Flash chemistry: flow chemistry that cannot be done in batch. J. Yoshida, Y. Takahashi, A. Nagaki, Chem. Commun., 2013, 49, 9896. DOI: 10.1039/C3CC44709J

2 Flow synthesis of ethyl isocyanoacetate enabling the telescoped synthesis of 1,2,4-triazoles and pyrrolo-[1,2-c]pyrimidines. M. Baumann. A. M. Rodriguez Garcia, I. R. Baxendale, Org. Biomol. Chem., 2015, 13, 4231. DOI: 10.1039/C5OB00245A

3 Liquid phase oxidation chemistry in continuous-flow microreactors. H. P. L. Gemoets, Y. Su, M. Shang, V. Hessel, R. Luque, T. Noël, Chem. Soc. Rev.201645, 83. DOI: 10.1039/C5CS00447K

4 Flow chemistry syntheses of natural products. J. C. Pastre, D. L. Browne, S. V. Ley, Chem. Soc. Rev.201342, 8849. DOI: 10.1039/C3CS60246J

5 Chemoenzymatic flow cascade for the synthesis of protected mandelonitrile derivatives. M.M. Delville, K. Koch, J.C.M. van Hest, F.P.J.T. Ruties, Org. Biomol. Chem., 2015, 13, 1634. DOI: 10.1039/C4OB02128B

6 A monolith immobilised iridium Cp* catalyst for hydrogen transfer reactions under flow conditions. M. V. Rojo, L. Guetzoyan, I. R. Baxendale, Org. Biomol. Chem., 2015, 13, 1768. DOI: 10.1039/C4OB02376E

7 A perfluoroaromatic abiotic analog of H2 relaxin enabled by rapid flow-based peptide synthesis. T. Luhmann, S. K. Mong, M. D. Smino, L. Meinel, B. L. Pentelute, Org. Biomol. Chem., 2016, 14, 3345. DOI: 10.1039/C6OB00208K


Victoria Corless is currently completing her Ph.D. in organic chemistry with Prof. Andrei Yudin at The University of Toronto. Her research is centred on the synthesis of kinetically amphoteric molecules, which offer a versatile platform for the development of chemoselective transformations with particular emphasis on creating novel biologically active molecules.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

16th French-American Chemical Society meeting

French-American Chemical Society
16th Meeting

19-23 June 2016  –  Santa Barbara, California, USA

Organic & Biomolecular Chemistry and Catalysis Science & Technology are delighted to support the 16th French-American Chemical Society meeting. The conference will feature an excellent range of speakers including:

  • Dennis Hall (University of Alberta) – Studies Towards the Synthesis of Polycyclic Alkaloids
  • Bastien Nay (Muséum National d’Histoire Naturelle) – Bio-inspired Strategies for the Total Synthesis of Polycyclic Chalasins and Related PKS-NRPS Natural Products
  • Surya Prakash (USC) – Our Recent Studies on Fluoroalkylations
  • David Williams (Indiana University) – Studies Towards the Synthesis of Polycyclic Alkaloids, and 
  • Françoise Colobert (Université de Strasbourg) – Enantiopure Sulfoxide, an Efficient Chiral Directing Group for Stereoselective C-H Bond Activation.

Register now to secure your place and take part in this great five day symposium with 20 speakers comprising established and emerging researchers from both academia and industry. The meeting is organised by Professor Bruce Lipshutz (University of California Santa Barbara), Dr Robert Dodd (Institut de Chimie des Substances Naturelles) and Dr Jean Suffert (Université de Strasbourg) this year.

For more information and to book your place please visit the event page.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)