Celebrating 25 years of the Key Laboratory for Special Functional Materials at Henan University

Celebrating 25 years of the Key Laboratory for Special Functional Materials at Henan University

Guest edited by Feng Bai, Gang Cheng, Zuliang Du and Guohua Jia

Last year we were delighted to celebrate the 25th anniversary of the Key Laboratory for Special Functional Materials of Ministry of Education at Henan University with a special collection in Nanoscale highlighting the breadth of high-quality work from the institute. We’re pleased to share this collection of research and reviews covering the most recent research progress in a wide spectrum of nanoscience and nanotechnology from researchers currently affiliated with the Key Lab as well as esteemed alumni.

You can explore the collection and read the introductory editorial from our guest editors below, with all articles free to access until the end of April 2024.

Read the collection

Photos of Feng Bai, Gang Cheng, Zuliang Du and Guohua Jia.

Professor Feng Bai, Professor Gang Cheng, Professor Zuliang Du and Professor Guohua Jia served as guest editors for this collection and highlight the history of the Key Laboratory for Special Functional Materials of Ministry of Education and significance of this anniversary in their introductory editorial.

Read the introductory editorial

All of the articles in the collection are free to access until the end of April 2024. Read some of the featured articles below.

Reviews

Graphical abstract image for Transformation mechanism of high-valence metal sites for the optimization of Co- and Ni-based OER catalysts in an alkaline environment: recent progress and perspectives.

Transformation mechanism of high-valence metal sites for the optimization of Co- and Ni-based OER catalysts in an alkaline environment: recent progress and perspectives
Chen Qiao, Yingying Hao, Chuanbao Cao and JiaTao Zhang
Nanoscale, 2023, DOI: 10.1039/D2NR05783B

 

Graphical abstract image for Polyoxometalate-based frameworks for photocatalysis and photothermal catalysis.

Polyoxometalate-based frameworks for photocatalysis and photothermal catalysis
Xiaofei Chen, Hongzhuo Wu, Xinjian Shi and Lixin Wu
Nanoscale, 2023, DOI: 10.1039/D3NR01176C

 

Research articles

Graphical abstract image for Selection of an aggregation-caused quenching-based fluorescent tracer for imaging studies in nano drug delivery systems.

Selection of an aggregation-caused quenching-based fluorescent tracer for imaging studies in nano drug delivery systems
Xin Ji, Yifan Cai, Xiaochun Dong, Wei Wu and Weili Zhao
Nanoscale, 2023, DOI: 10.1039/D3NR01018J

 

Graphical abstract image for A layer-stacked NiO nanowire/nanosheet homostructure for electrochromic smart windows with ultra-large optical modulation.

A layer-stacked NiO nanowire/nanosheet homostructure for electrochromic smart windows with ultra-large optical modulation
Yi Gao, Pengyang Lei, Siyu Zhang, Huanhuan Liu, Chengyu Hu, Zhu Kou, Jinhui Wang and Guofa Cai
Nanoscale, 2023, DOI: 10.1039/D3NR01211E

 

Nanoscale is a high-impact international journal, publishing high-quality experimental and theoretical work across the breadth of nanoscience and nanotechnology. Our broad scope covers cross-community research that bridges the various disciplines involved with nanoscience and nanotechnology. We are always interested in considering high-quality articles and we would be delighted if you would consider the journal for your next submission, which can be made via our online submission service. All submissions will be subject to initial assessment and peer review as appropriate according to the journal’s guidelines.

We hope you enjoy reading this collection and look forward to showcasing more work from the institute in the future. Please continue to submit your exciting work to Nanoscale.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Open call for papers – Targeted biomedical applications of nanomaterials

Open call for papers – Targeted biomedical applications of nanomaterials

Submissions deadline extended until 14 July 2024

We are delighted to announce our latest open call for submissions to a themed collection on Targeted biomedical applications of nanomaterials to be published across Nanoscale, Nanoscale Advances, Journal of Materials Chemistry B and Materials Advances.


This collection is guest edited by Professor Dhiraj Bhatia (IIT Gandhinagar, India), Professor Mukesh Dhanka (IIT Gandhinagar, India), Dr Anjali Awasthi (University of Rajasthan, India), Professor Kamlendra Awasthi (Malaviya National Institute of Technology Jaipur, India) and Professor Kaushik Chatterjee (IISc Bangalore, India).

Nano-biomaterials, i.e., nanomaterials derived or inspired from biological molecules, have gained substantial influence in the recent times in terms of their fine tunability, scale-up potential, excellent interface and adaptation with biological systems. Multiple different approaches involving physical and computational modelling, chemical structure synthesis and characterization and biological modifications have been used to develop next generation bionanodevices that can interface with biological systems in a very focussed manner. Some of the recent devices have already made their way to clinical trials and many others are in different stages of the pipeline for translational applications.

This new collection in Nanoscale, JMC B, Nanoscale Advances and Materials Advances will focus on the design of multifunctional hybrid nanomaterials for different applications and on interfacing nanomaterials with biological systems for translational studies. The scope of this collection loosely aligns with the 2023 International Conference on Nanomaterials in Biology (ICNB 2023), held at the Indian Institute of Technology Gandhinagar along with Soft Materials Research Society, from 19–22 November 2023. Potential topics for the collection include but are not limited to,

  • 3D Bioprinting
  • Big Data in Nanosciences
  • Bioinspired and Biomimetic Materials
  • Biological Nanodevices and Sensors
  • Engineered Nanomaterials
  • Nanomaterials and Environmental Effects
  • Nanomaterials for Bioenergy Applications
  • Nanomaterials for Sustainable Agriculture and Food Science
  • Nanomaterials in Biological Uptake and Nanotoxicology
  • Nanomaterials in Gene and Drug Delivery
  • Nanomaterials in Tissue Engineering and Medicine
  • Polymer Supramolecular Chemistry and Applications
  • Scaffold design and fabrication

Submit your work by 14 July 2024


How to submit

Submissions to the collection should fit within the scope of Nanoscale, Nanoscale Advances, Materials Advances or Journal of Materials Chemistry B – Please see the journals’ websites for more information on the journal’s scope, standards, article types and author guidelines. We encourage authors to select the journal most relevant to their research. All manuscripts will undergo the normal initial assessment and peer review processes, if appropriate, in line with the journal’s high standards, managed by the journal editors. Accepted manuscripts will be added to the online collection as soon as they are published and they will be featured in a regular issue of the relevant journal. Please note that peer review or acceptance are not guaranteed. 

If you would like to contribute to this themed collection, please submit your article directly through the journal submissions platform. Please mention that your submission is a contribution to the Targeted biomedical applications of nanomaterials collection in the “Themed issues” section of the submission form and is in response to the Open Call. The Editorial Office reserves the right to check suitability of submissions in relation to the scope of both the journal and the collection, and as such inclusion of accepted articles in the final themed collection is not guaranteed.

If you have any questions about the collection or the submissions process, please do contact the Editorial Office at materialsb-rsc@rsc.org and they will be able to assist.

We look forward to receiving your latest work and considering it for this collection!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Call For Papers: Metal nanoclusters

Call For Papers: Metal nanoclusters

Guest edited by Sukhendu Mandal, Yuichi Negishi, Di Sun and Anindita Das

We are delighted to announce a call for papers for our latest online themed collection in Nanoscale on metal nanoclusters that is being guest edited by Professor Sukhendu Mandal (IISER Thiruvananthapuram, India), Professor Yuichi Negishi (Tokyo University of Science, Japan), Professor Di Sun (Shandong University, China) and Professor Anindita Das (South Methodist University, USA).

Metal nanoclusters open call for papers promotional graphic. Includes photos of the guest editors Sukhendu Mandal, Yuichi Negishi, Di Sun and Anindita Das. Open for submissions until 1 July 2024.

Atomically precise metal nanoclusters are novel materials that have the potential to address everyday needs from energy to health. Luminescent metal clusters can be used for effective and efficient energy harvesting and conversion technologies, while water-soluble luminescent metal clusters offer more efficient and personalized biomedical approaches. Furthermore, nanoclusters can be used as building units to form higher-dimensional cluster-assembled materials and can modulate the optoelectronic properties of desired device materials. To create a hierarchy of structures and applications, a fundamental understanding of the structure-property relationship at the atomic level is vital.

This special collection aims to look at new structures, photophysical, chemical and electrochemical catalysis reactions, and structure-property correlations within the themes of atomically precise metal nanoclusters. We wish to highlight research communicating novel structures, properties and phenomena, where applications for societal needs are appreciated as well as reports of new and exciting basic science. Prospective topics include but are not limited to:

  • New nanocluster structures
  • Transformation reactions
  • Luminescent materials
  • Light-matter interactions
  • Catalysis
  • Electrocatalysis
  • Bio-imaging and sensing
  • Drug delivery
  • Optoelectronic devices
  • New techniques for characterization

This call for papers is open for the following article types:

  • Communications
  • Full papers

Open for submissions until 1 July 2024

If you would like to contribute to this themed collection, you can submit your article directly through the Nanoscale online submission system. Please mention that this submission is an open call contribution to the metal nanoclusters collection in the “Themed issues” section of the submission form and add a “Note to the Editor” that this is from the Open Call. The Editorial Office reserves the right to check suitability of submissions in relation to the scope of both the journal and the collection, and inclusion of accepted articles in the final themed issue is not guaranteed.

Please also note that all submissions will undergo our normal rigorous peer review processes including an initial assessment prior to peer review, and that peer review and acceptance are not guaranteed.

If you have any questions about the journal or the collection, then Edward Gardner, the Development Editor for Nanoscale, would be happy to answer them. You can contact him by emailing the journal inbox.

With best wishes,

Professor Sukhendu Mandal, IISER Thiruvananthapuram, India (ORCID: 0000-0002-4725-8418)
Professor Yuichi Negishi, Tokyo University of Science, Japan (ORCID: 0000-0003-3965-1399)
Professor Di Sun, Shandong University, China (ORCID: 0000-0001-5966-1207)
Professor Anindita Das, South Methodist University, USA (ORCID: 0000-0002-8855-8265)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Chemical Nanoscience and Nanotechnology Network Annual Symposium 2024 Poster Prize Winners

The Chemical Nanoscience and Nanotechnology Network Annual Symposium took place in Burlington House, London, UK from  January 15-16 2024. Nanoscale Horizons, Nanoscale and Nanoscale Advances were pleased to support awards at this event and we would like to congratulate our winners!

The Best Poster Presentation Certificate, sponsored by Nanoscale Horizons, was awarded to Doory Dan (University of Florida, Gainesville, FL) for the presentation of her work on “Molecular Models for Single Cobalt Ions on Cerium Dioxide Nanoparticles: Heterometallic Ce/Co-oxo Clusters”

Best poster presentation (Nanoscale Horizons) Doory Dan (University of Florida, Gainesville, FL) "Molecular Models for Single Cobalt Ions on Cerium Dioxide Nanoparticles: Heterometallic Ce/Co-oxo Clusters"

Doory Dan receiving her best poster presentation certificate, sponsored by Nanoscale Horizons.

The First Runner-up Poster Presentation Certificate, sponsored by Nanoscale, was awarded to Sean Leggatt-Bulaitis (University of Leeds) for the presentation of hiswork on “Nanocarbon aerogels for catalytic flow processes”

First runner-up for poster presentation (Nanoscale) Sean Leggatt-Bulaitis (University of Leeds) "Nanocarbon aerogels for catalytic flow processes"

Sean Leggatt-Bulaitis receiving his first runner-up for poster presentation certificate, sponsored by Nanoscale.

The Second Runner-up Poster Presentation Certificate, sponsored by Nanoscale Advances, was awarded to Daniel Zimmer (Worcester Polytechnic Institute, Worcester, MA) for the presentation of his work on “Synthesis and Impurity Analysis of Branched-Chain Ionizable Lipids for Lipid Nanoparticles”

Second runner-up poster presentation (Nanoscale Advances) Danniel Zimmer (Worcester Polytechnic Institute, Worcester, MA) "Synthesis and Impurity Analysis of Branched-Chain Ionizable Lipids for Lipid Nanoparticles"

Daniel Zimmer receiving his second runner-up for poster presentation certificate, sponsored by Nanoscale Advances.

 


Photo of Doory Dan.

 

Doory Dan was born in South Korea but spent her teenage years studying abroad in Malaysia before continuing her education in the United States of America. She received her BS in Chemistry from Northwest Missouri State University in 2018 and she is currently pursuing a PhD degree at the University of Florida under the supervision of Prof. George Christou in the inorganic division. Her research is in molecular nanoscience, focused on the synthesis and structural characterization of molecular models of late 3d transition metals supported on cerium dioxide nanoparticle surfaces, as well as their study as heterogenous catalysts.

 

Photo of Sean Leggatt-Bulaitis.

 

Sean Leggatt-Bulaitis is a second-year PhD student in chemistry at the University of Leeds. He is part of the Menzel research group and is currently researching catalyst functionalised graphene aerogels for (electro)chemical flow applications. His research interests include nanomaterials, heterogeneous catalysis, and materials characterisation techniques.

 

Photo of Daniel Zimmer.

 

Daniel Zimmer is a 3rd year Chemical engineering Ph.D. Candidate at Worcester Polytechnic Institute. His research focuses on the manufacturing, analysis, and delivery of lipid-based therapeutics, including lipid nanoparticles, exosomes and liposomes.

 

We’d like to congratulate all the prize winners once more, it’s a great achievement for their work to be selected from all the excellent research presented at the event. We’d also like to thank all organisers and the RSC Chemical Nanoscience and Nanotechnology Network for organising this conference. You can follow the RSC Chemical Nanoscience and Nanotechnology Network (@RSC__CNN) on Twitter to keep up to date with their latest news.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Professor Nguyen TK Thanh joins the Associate Editor team

Professor Nguyen TK Thanh joins the Associate Editor team

Welcome to Nanoscale and Nanoscale Advances!

 

Photo of Nguyen TK Thanh.

We are delighted to welcome Professor Nguyen TK Thanh, University College London, UK, as a new Associate Editor working across Nanoscale and Nanoscale Advances.

Professor Nguyễn Thị Kim Thanh held a prestigious Royal Society University Research Fellowship (2005-2014). She was appointed a Full Professor in Nanomaterials in 2013 at University College London where she leads a dynamic group conducting cutting edge interdisciplinary and innovative research on the design, and synthesis of magnetic and plasmonic nanomaterials for biomedical applications.

In 2019, she was honoured for her achievements in the field of nanomaterials and was awarded Royal Society Rosalind Franklin Medal. She was the RSC Interdisciplinary Prize winner in 2022 and was also awarded the SCI/RSC Colloids Groups 2023 Graham Prize Lectureship. She is one of only 12 recipients globally of the IUPAC 2023 Distinguished Women in Chemistry/Chemical Engineering Awards.

“I am really looking forward to joining the editorial board of Nanoscale and Nanoscale Advances as it will compliment my role as Editor-in-chief of the RSC Nanoscience and Nanotechnology book series. We published our first paper in Nanoscale in 2010 and I have been working closely with the journal as a guest editor three times. It is a great chance to promote research in nanoscale science and technology, which will have many tremendous applications and tackling many challenges in our society such as improving quality of life on earth and sustaining its climate.” – Professor Nguyen TK Thanh

We welcome you to submit your latest work on magnetic, plasmonic and colloidal nanomaterials for biomedical applications to her editorial office for consideration.

Submit your latest research

Explore some of Professor Thanh’s recent articles below.

Graphical abstract for Development of a thermochromic lateral flow assay to improve sensitivity for dengue virus serotype 2 NS1 detection.

Development of a thermochromic lateral flow assay to improve sensitivity for dengue virus serotype 2 NS1 detection
Thithawat Trakoolwilaiwan, Yasuhiro Takeuchi, Terence S. Leung, Matej Sebek, Liudmyla Storozhuk, Linh Nguyen, Le Duc Tung and Nguyen Thi Kim Thanh*
Nanoscale, 2023, DOI: 10.1039/D3NR01858J

 

Graphical abstract for Enhanced detoxification of Cr6+ by Shewanella oneidensis via adsorption on spherical and flower-like manganese ferrite nanostructures.

Enhanced detoxification of Cr6+ by Shewanella oneidensis via adsorption on spherical and flower-like manganese ferrite nanostructures
Diana S. Raie, Ioannis Tsonas, Melisa Canales, Stefanos Mourdikoudis, Konstantinos Simeonidis, Antonios Makridis, Dimitrios Karfaridis, Shanom Ali, Georgios Vourlias, Peter Wilson, Laurent Bozec, Lena Ciric and Nguyen Thi Kim Thanh*
Nanoscale Adv., 2023, DOI: 10.1039/D2NA00691J

 

Graphical abstract for Magnetic particle imaging: tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality.

Magnetic particle imaging: tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality
Stanley Harvell-Smith, Le Duc Tung and Nguyen Thi Kim Thanh*
Nanoscale, 2022, DOI: 10.1039/D1NR05670K

 

Nanoscale and Nanoscale Advances are high-impact international journals, publishing high-quality experimental and theoretical work across the breadth of nanoscience and nanotechnology. Our broad scope covers cross-community research that bridges the various disciplines involved with nanoscience and nanotechnology.

Please join us in welcoming Professor Thanh to Nanoscale and Nanoscale Advances and we hope you will consider Nanoscale and Nanoscale Advances for your future submissions.

Best wishes,

Dr Heather Montgomery
Managing Editor, Nanoscale
Dr Jeremy Allen
Executive Editor, Nanoscale Advances
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Celebrating Nanoscience in China

Read our new Nanoscale Advances collection

In 2023, Nanoscale Advances published quality research across the breadth of nanoscience and our authors and readers in China remain a core part of the journal community.

To showcase some of the great research being carried out, we have selected some of the most popular articles from authors in China published in 2023. A small selection are highlighted below, but click the button below to read the full collection. All articles are gold open access so they are free to read.

 

 

Recent progress in flexible micro-pressure sensors for wearable health monitoring

Jianguo Hu, Guanhua Dun, Xiangshun Geng, Jing Chen, Xiaoming Wu and Tian-Ling Ren

Nanoscale Adv., 2023, 5, 3131-3145

 

A hierarchical integrated 3D carbon electrode derived from gingko leaves via hydrothermal carbonization of H3PO4 for high-performance supercapacitors

Han Liu, Fumin Zhang, Xinyu Lin, Jinggao Wu and Jing Huang

Nanoscale Adv., 2023, 5, 786-795

 

Regulating the thickness of nanofiltration membranes for efficient water purification

Ke Tang, LinSheng Zhu, Piao Lan, YunQiang Chen, Zhou Chen, Yihong Lan and WeiGuang Lan

Nanoscale Adv., 2023, 5, 4770-4781

 

Nanoscale Advances is pleased to have prominent members of the nanoscience community in China acting as Editorial Board Members:

  • Chunli Bai (Institute of Chemistry, Chinese Academy of Sciences)
  • Yue Zhang (University of Science and Technology Beijing)
  • Qing Dai (National Center for Nanoscience and Technology of China)
  • Quan Li (The Chinese University of Hong Kong)
  • Jinlan Wang (Southeast University)
  • Manzhou Zhu (Anhui University)

 

The Royal Society of Chemistry has arranged Read and Publish agreements with a number of institutes in China. As part of these agreements you may be entitled to publish your research gold open access at no cost or with a discount. Get in touch to find out more and find out if your institute is covered here.

Wishing you all the best for the upcoming Year of the Dragon!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

2024 Lunar New Year Collection

Happy Lunar New Year

Happy Chinese and Lunar New Year from everyone on the Nanoscale Horizons, Nanoscale and Nanoscale Advances teams! To celebrate the start of the Year of the Dragon, we are delighted to highlight some of the most popular articles published in our nanoscience journals last year by corresponding authors based in countries celebrating the Lunar New Year.

Read the collection now

Nanoscale Horizons, Nanoscale and Nanoscale Advances Lunar New Year promotional graphic with a red background and an image of a gold dragon surrounded by clouds and fireworks. Text reads: " Wishing you a Happy Lunar New Year 2024, May you enjoy a very prosperous and productive year of the Dragon".

All of the articles in these collections are free to access until the end of March 2024. We hope you enjoy reading these popular articles and wish you a happy, healthy and prosperous year of the dragon!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Themed collection: Multicomponent plasmonic hybrid nanoarchitectures

Read our new collection in Nanoscale Advances

We are delighted to introduce our new themed collection focusing on multicomponent plasmonic hybrid nanoarchitectures with precisely tailored properties for emerging applications!

Guest Edited by Hao Jing (George Mason University, USA)

This collection in Nanoscale Advances features burgeoning research on a variety of multifunctional plasmonic nanoparticles with synergistically reinforced properties. Articles cover the rational design, synthesis and characterization of multicomponent plasmonic hybrid nanoarchitectures with tailored chemical and physical properties, as well as their utilization in a wide variety of applications.

 

A small selection of the papers are featured below, all open access.

Raman encoding for security labels: a review
Dong Yu, Wei Zhu and Ai-Guo Shen
Nanoscale Adv., 2023, 5, 6365-6381

Correlating structural changes in thermoresponsive hydrogels to the optical response of embedded plasmonic nanoparticles
Kamila Zygadlo, Chung-Hao Liu, Emmanuel Reynoso Bernardo, Huayue Ai, Mu-Ping Nieh and Lindsey A. Hanson
Nanoscale Adv., 2024, 6, 146-154

Bimetallic copper palladium nanorods: plasmonic properties and palladium content effects
Andrey Ten, Claire A. West, Soojin Jeong, Elizabeth R. Hopper, Yi Wang, Baixu Zhu, Quentin M. Ramasse, Xingchen Ye and Emilie Ringe
Nanoscale Adv., 2023, 5, 6524-6532

 

Did you know?

At Nanoscale Advances, our themed collections are built by collaboration between our Guest Editors and expert Associate Editors. Our Guest Editors guide the scope and curate the contributions in our collections but all submissions are handled through peer review by our team of resident Associate Editors. This means that as an author you receive a consistent experience, and as a reader you can trust the quality of the science being presented.

 

If you have an idea for a topical collection in your research field, we’d love to hear from you! Get in touch here.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Spotlight on a recent exciting article in Nanoscale Advances

Experimental and theoretical evidence for unprecedented strong interactions of gold atoms with boron on boron/sulfur-doped carbon surfaces

Nanoscale Advances publishes experimental and theoretical work across the breadth of the nanoscienes, which are open access and free to read. We are excited to highlight a recent article on the detection of direct Au-B interactions in nanomaterials with the potential for controlling the dynamics of metal atoms on fabricated matrices and a new-generation of nano-devices with wide applications.

In this post, we share insights from our interview with the authors of this paper titled “Experimental and theoretical evidence for unprecedented strong interactions of gold atoms with boron on boron/sulfur-doped carbon surfaces“.

 

Insights from the authors of a recent Nanoscale Advances article

What aspect of your research are you most excited about at the moment?

“The prospect of using new techniques to explore the chemistry of metals on the nanoscale level, not only for understanding the chemistry of biologically essential metals, but also for applications in disease diagnosis and drug design.”

What do you find most challenging about your research?

“The challenges posed by dynamic metallomics- those of defining on the nanoscale the oxidation states of metal ions, the nature of the coordinated ligands, as well as their coordination geometries and tracking changes on timescales of nanoseconds to years.
Our paper shows we have come close to achieving this for a single gold atom. We dream of using a similar approach to unravel the chemistry of the formation and properties of metallic iron and copper nanocrystals in the brain [https://www.science.org/doi/10.1126/sciadv.abf6707]”

How do you feel about Nanoscale Advances as a place to publish research on this topic?

“Perfect for our current discoveries which are based not only on experimental studies using state-of-the-art techniques, but also on challenging theoretical calculations.”

What is one piece of career-related advice or wisdom that you would like to share with early career scientists?

“Enjoy the excitement of discovery research- the unexpected findings that open up totally new areas of research. That was how our research on single-metal-atom coordination chemistry began!”

Meet the authors

Samya Banerjee (MRSC) received his PhD in 2015 from the Indian Institute of Science. Subsequently, he was a postdoctoral fellow at Johns Hopkins University, USA, a Royal Society-SERB Newton International Fellow at the University of Warwick, UK (with Prof. Peter J. Sadler), and a postdoctoral fellow at the Georg-August Universität Göttingen, Germany. He is currently an Assistant Professor at the Indian Institute of Technology (BHU), India. Recently, he was awarded a 2022 Dalton Division Horizon Prize by the Royal Society of Chemistry for pioneering work on “catalysis of redox reactions in cancer cells by synthetic organometallic complexes”. His research interests include the development of metal-based anticancer, antibacterial and antimalarial drugs.

Juliusz A. Wolny graduated in Chemistry at the University of Wrocław and completed his PhD thesis in inorganic chemistry. He worked in the area of synthetic chemistry and molecular spectroscopy in the groups of Professors Mikołaj F. Rudolf in Wrocław, Alex von Zelewsky in Fribourg, and Hans Toftlund in Odense. He has also worked in the area of applied quantum chemistry and synchrotron spectroscopy in the group of Professor Alfred X. Trauwein in Lübeck. Since 2006, he has been a researcher at the University of Kaiserslautern in the group of Professor Volker Schünemann. His scientific interest involves the spin-crossover effect, vibrational spectroscopy, conventional and synchrotron Mössbauer spectroscopy and application of quantum chemical methods to inorganic complexes.

 

Mohsen is a senior EM staff scientist at the electron Physical Science Imaging Centre (ePSIC) at the Diamond Light Source. His main research is currently on the use of Scanning Electron Nanobeam Diffraction (SEND) for better statistical characterisation of engineering materials via development of automated data analysis workflows combined with script-controlled data collection on the electron microscope. He completed his PhD at the University of Alberta (Edmonton, Canada) in 2010, with thesis on transmission electron microscopy (TEM) characterisation of beam-sensitive Mg-based hydride systems.

Dedication to Professor Nicolas Barry: Nicolas obtained his PhD at Neuchâtel University in Switzerland in 2011. He was then awarded a research fellowship by the Swiss National Science Foundation to join the Sadler lab in the Department of Chemistry at the University of Warwick. His research on organometallic precious metal carborane complexes encapsulated in polymer micelles opened up an entirely new area of research. Unexpectedly, TEM studies of such micelles with Richard Beanland and Peter Sadler at Warwick led to the discovery that irradiation of these nanoparticles in a TEM instrument rapidly generates a graphenic lattice containing precious metal atoms which migrate to form molecules, clusters and nanocrystals. That work initiated several subsequent studies on single-metal-atom coordination chemistry, and the role of dopants in the formation of metal nanocrystals, including that on gold reported in this current Nanoscale Advances paper. In 2014 he was awarded a Leverhulme Early Career Research Fellowship to initiate an independent career at Warwick, and in 2016 a Royal Society University Research Fellowship, which he took up at the University of Bradford. In 2020 he was appointed to a Professorship there. He excited school students with his enthusiasm for chemistry, leading an exhibit entitled ‘Molecular Music – the sound of chemistry’ at the 2019 Royal Society Summer Science Exhibition, in partnership with Ilkley Grammar School, turning the vibrations in molecules into musical notes. He was a highly talented metal coordination chemist. His research collaborators, colleagues, school-students, friends, and family alike all miss him greatly.

Dr Yisong Han is currently Scientific Officer at the University of Warwick, where he provides advanced scientific and technical support for transmission electron microscopy (TEM) instruments. Before joining Warwick, he gained extensive postdoctoral research experience in characterising a variety of materials using TEM related techniques. He completed his PhD at the University of Nottingham in 2007.

 

 

Dr Houari Amari is a Research Group Leader at the Leibniz institute for crystal growth (Berlin, Germany). He obtained his MSc (Hons.) from the University of Strasbourg (France) and his Ph.D. from the University of Sheffield (United Kingdom). His Ph.D. was related to investigations of novel semiconductors using advanced transmission electron microscopy (TEM) techniques. Dr Amari’s actual research is focused on achieving atomic-level structural and chemical characterization of a wide range of materials, including semiconductors and dielectrics, using in-situ TEM.

Prof. Beanland is academic director of Warwick’s Electron Microscopy facility and holds a personal chair in the Department of Physics at the University of Warwick, with interests in electron diffraction, structure solution, and atomic-scale characterisation of materials.

Volker Schünemann studied physics at the University of Hamburg and did his PhD thesis under the supervision of Alfred X. Trautwein at the University of Lübeck, where he worked on the synthesis and characterization of iron nanoparticles in zeolites. This was his first exposure to temperature- and field-dependent Mössbauer spectroscopy. Subsequently, in 1993, he did postdoctoral work on bimetallic FeRh particles in the group of W.M.H. Sachtler at Northwestern University, Evanston, USA. Here the focus was on catalytic properties in CO hydrogenation. After his return in 1994 to the group of Alfred X. Trautwein to the University of Lübeck, he started to work on biological applications of Mössbauer spectroscopy and investigated different classes of iron-containing proteins such as heme and iron-sulfur proteins. In 2004, he became a professor at the University of Kaiserslautern and established a laboratory for temperature- and field-dependent Mössbauer spectroscopy. The focus of his group is on the study of the function and electronic and dynamical properties of iron centers in nature (iron proteins) and coordination chemistry (e.g., spin-crossover compounds, molecular magnets, and biomimetic iron complexes) using conventional and synchrotron-based Mössbauer spectroscopy. Quantum chemical calculations based on density functional theory (DFT) are also used to better understand electronic and dynamic properties.

Peter obtained his BA, MA and DPhil at the University of Oxford. Subsequently he was a Medical Research Council Research Fellow at the University of Cambridge and National Institute for Medical Research. From 1973-96 he was Lecturer, Reader and Professor at Birkbeck College, University of London, and from 1996-2007 held the Crum Brown Chair of Chemistry at the University of Edinburgh. In 2007, he took up a Chair in Chemistry at the University of Warwick as Head of Department, where he is now a Professor. He is a Fellow of the Royal Society of Chemistry, the Royal Society of Edinburgh, and the Royal Society of London, an EPSRC RISE Fellow (Recognising Inspirational Scientists and Engineers), a Fellow of the European Academy of Sciences, and an Honorary Fellow of the Chemical Research Society of India, and the Chinese Chemical Society. He was awarded the Royal Society 2022 Davy Medal, and 2022 Royal Society of Chemistry Dalton Horizon Team Prize.

 

We congratulate the authors on their impactful work and wish them success in their future academic research!

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Professor Eva Hemmer joins the Associate Editor team

Professor Eva Hemmer joins the Associate Editor team

Welcome to Nanoscale and Nanoscale Advances!

 

Photo of Professor Eva Hemmer.We are delighted to welcome Professor Eva Hemmer, University of Ottawa, Canada, as a new Associate Editor working across Nanoscale and Nanoscale Advances.

Eva Hemmer is an Associate Professor of Materials Chemistry at the University of Ottawa. She received her PhD (2008) in materials science from Saarland University, Germany. After a postdoctoral experience at Tokyo University of Science, Japan, with Prof. K. Soga (2009-2012), she moved to Canada to become a joint Alexander von Humboldt postdoctoral fellow with Profs. F. Vetrone and F. Légaré at INRS-EMT, Montreal (2012-2015).

In 2016, Eva joined the University of Ottawa, where her research team focused on new designs of upconverting and near-infrared-emitting rare-earth-based nanoparticles for bioimaging, optoelectronic, and optomagnetic applications.

“I have been reviewing research papers for quite some time now, including for the Nanoscale family, and always enjoyed it as a great opportunity to get to see brand new research in materials chemistry that is also relevant to my own work on optical nanomaterials. I am very excited to take on this new role as member of the editorial board, looking forward to deepening and broadening this experience when engaging with authors, reviewers, and the editorial team.” – Professor Eva Hemmer

We welcome you to submit your latest work on nanomaterials for bioimaging, optoelectronics and magnetics to her editorial office for consideration.

Submit your latest research

Explore some of Professor Hemmer’s recent articles below.

Graphical abstract for Core–multi-shell design: unlocking multimodal capabilities in lanthanide-based nanoparticles as upconverting, T2-weighted MRI and CT probes.

Core–multi-shell design: unlocking multimodal capabilities in lanthanide-based nanoparticles as upconverting, T2-weighted MRI and CT probes
Nan Liu, Christian Homann, Samuel Morfin, Meghana S. Kesanakurti, Nicholas D. Calvert, Adam J. Shuhendler, Tom Al and Eva Hemmer*
Nanoscale, 2023, DOI: 10.1039/D3NR05380F

 

Graphical abstract for Luminescence thermometry using sprayed films of metal complexes.

Luminescence thermometry using sprayed films of metal complexes
Riccardo Marin, Natalie C. Millan, Laura Kelly, Nan Liu, Emille Martinazzo Rodrigues, Muralee Murugesu* and Eva Hemmer*
J. Mater. Chem. C, 2022, DOI: 10.1039/D1TC05484H

 

Graphical abstract for Cubic versus hexagonal – phase, size and morphology effects on the photoluminescence quantum yield of NaGdF4:Er3+/Yb3+ upconverting nanoparticles.

Cubic versus hexagonal – phase, size and morphology effects on the photoluminescence quantum yield of NaGdF4:Er3+/Yb3+ upconverting nanoparticles
Marta Quintanilla,* Eva Hemmer,* Jose Marques-Hueso, Shadi Rohani, Giacomo Lucchini, Miao Wang, Reza R. Zamani, Vladimir Roddatis, Adolfo Speghini, Bryce S. Richards and Fiorenzo Vetrone*
Nanoscale, 2022, DOI: 10.1039/D1NR06319G

 

Nanoscale and Nanoscale Advances are high-impact international journals, publishing high-quality experimental and theoretical work across the breadth of nanoscience and nanotechnology. Our broad scope covers cross-community research that bridges the various disciplines involved with nanoscience and nanotechnology.

Please join us in welcoming Professor Hemmer to Nanoscale and Nanoscale Advances and we hope you will consider Nanoscale and Nanoscale Advances for your future submissions.

Best wishes,

Dr Heather Montgomery
Managing Editor, Nanoscale
Dr Jeremy Allen
Executive Editor, Nanoscale Advances
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)