Archive for the ‘Web writers’ Category

Shepherding cells – moving in the right direction?

image file: c4nr06594h-f1.tif

Schematic representation depicting the ability for an external magnetic field to attract magnetic nanoparticles which have been internalised within cells. For details please view the full article.

Superparamagnetic nanoparticles are widely used for non-invasive imaging techniques such as magnetic resonance imaging (MRI) due to their ability to only become magnetised under the influence of an external magnetic field. In this article, it is demonstrated that labelling cells with magnetite nanoparticles can allow for manipulation of both direction and speed of the migration of cells using an external magnet. Bespoke nanoparticles were synthesised with a positive charge to induce internalisation into two different cell lines that are important for wound repair. Placing labelled cells under the influence of an external magnetic field resulted in 2D migration of cells towards the magnet, whereas non-labelled cells (in a magnetic field) and labelled cells with no magnetic showed no directional movement.  The migration could be monitored by bright field and fluorescent microscopy as the nanoparticles contained a fluorescent tag.  The possibility of controlling cell mobility is suggested to have importance in not only cell therapies, but also tissue engineering and cell tracking. This tailored synthesis approach could also allow tracking of cells in vivo using a bi-modal imaging approach of dual MRI and whole animal fluorescence.

Manipulating Directional Cell Motility Using Intracellular Superparamagnetic Nanoparticles
Michael Bradshaw, Tristan Clemons, Diwei Ho, Lucia Gutierrez, Francisco Lazaro, Michael House, Timothy Guy St Pierre, Mark Fear, Fiona Wood and Swaminathan Iyer
Nanoscale, 2015, Advance Article. DOI: 10.1039/C4NR06594H

Dr Mike Barrow is a guest web writer for the Nanoscale blog. He currently works as a Postdoctoral Researcher at the University of Liverpool.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

HOT article: A tunable submicro-optofluidic polymer filter based on guided-mode resonance

image file: c4nr07233b-f3.tif

SEM images of the polymer submicro-channels and photographs of the fabricated submicro-optofluidic PGMR filter with empty channels and with water filled channels, respectively.

Optical filters are routinely included in devices used for communications, displays and bio-sensing. One such class of optical filters, which have been frequently used, are guided-mode resonance (GMR) filters. Inherent errors with common GMR filters are assigned to fabrication difficulties and as a result, new classes of reconfigurable GMR filters have been created.

In this HOT article, Jin and co-workers have proposed and devised a novel polymer-based GMR (PGMR) which can be incorporated into lab on a chip devices and become tuned by the optical properties of the fluidic mixture present. The simple and low cost PGMR filter was fabricated in three stages, using two-beam interference lithography, floating nanofilm transfer, and finally, thermal bonding technology.

The tunability of this class of PGMR was tested by filling the fluidic channels with a range of liquid mixtures of differing refractive indices. The resulting PGMR exhibited high reflection efficiency in the visible wavelength region, a narrow band tuning range and a high tuning efficiency. The successful incorporation of the PGMR in an optofluidic device operating in the visible wavelength region opens up the possibility of the inclusion of such PGMR devices in future lab on a chip devices.

A tunable submicro-optofluidic polymer filter based on guided-mode resonance
Guohui Xiao, Qiangzhong Zhu, Yang Shen, Kezheng Li, Mingkai Liu, Qiandong Zhuang and Chongjun Jin
Nanoscale, 2015, 7, 3429-3434. DOI: 10.1039/C4NR07233B.

Dr Derek Craig is a guest web writer for the Nanoscale blog. He is a Post Doctoral Research Fellow at the University of St. Andrews based in the fields of Biophotonics and Materials Science. With a background in chemistry, his work mainly focuses on the synthesis of nano to meso materials and the use of imaging techniques to study biological samples.
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

A simple method for the preparation of ultra-small palladium nanoparticles and their utilization for the hydrogenation of terminal alkyne groups to alkanes

(A) Phenyl acetylene penetrating the Pd-NP in the ligand shell and (B) styrene cannot get attached on the ligand capped Pd-NP.

Whether or not we actively think about it, catalysts effect our every day lives.  With applications in automobiles and chemical reactions, catalysts enable modern technologies and have been the subject of much recent research and investment.

When it comes to innovation in catalyst design, Seth et al.’s November 2014 Communication demonstrates a way to create smaller, more selective monolayer-protected palladium nanoparticles (Pd NPs).  While they use a common digestive ripening method, the authors indicate that they perform a unique synthesis step for their Pd NPs; unlike in the traditional synthesis, they do not remove the surfactant during their reflux stage.  Using x-ray diffraction (XRD) and transmission electron microscopy (TEM), nanoparticle sizes were calculated to be 1.5 and ~1.8 nm respectively.  XRD and x-ray photoelectron spectroscopy (XPS) confirmed the presence of Pd(0), while the presence of organic molecules (owing to the ligand shell) was demonstrated via thermogravimetric analysis.

In terms of catalyst action, the authors hypothesize that terminal alkynes can penetrate the ligand shell and undergo hydrogenation to alkenes while other functional groups may not be able to penetrate the shell.  In order to test this hypothesis, they incubated their Pd NPs with phenyl acetylene and styrene and evaluated the results using both Fourier-transform infrared spectroscopy and XPS.  Results indicated that phenyl acetylene interacted with the Pd surface, while the styrene-incubated surfaces showed no such result.  Additionally, according to Seth et al., the MLP Pd NPs could be reused four to five times.

While the authors note that steric hindrance plays a role in this selectivity, they leave the complete mechanism for selectivity for future work.

A simple method for the preparation of ultra-small palladium nanoparticles and their utilization for the hydrogenation of terminal alkyne groups to alkanes
Jhumur Seth, Chandrababu Naidu Kona, Shyamsundar Das and B. L. V. Prasad
Nanoscale, 2015, 7, 872-876. DOI: 10.1039/C4NR04239E

Stephanie E. Vasko is currently a Senior Research Assistant at The Rock Ethics Institute at the Pennsylvania State University in State College. Her research focuses on science communication, STEM education, and the intersections between art, craft, and science.  You can follow her on Twitter at @stephanievasko.

The opinions and views expressed in this piece are those of the author and do not represent or reflect the opinion, views, or policy of the Pennsylvania State University, the Rock Ethics Institute, or the National Science Foundation.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

HOT article: A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2,4,6-trinitrophenol in aqueous solution

The last decade observed immense growth in applications of graphene, a carbon allotrope with applications in diverse areas of science, including fluorescent nanoparticles like quantum dots. However, the applications of graphene-based nanodevices in biological contexts have still been a bit slow. This is primarily due to the metal-free nature of graphene nanoparticles, leading to poor fluorescence abilities, and their lack of sensing abilities for various analytes.

Lin et al., in the current work, intelligently overcome these two problems by doping graphene quantum dots with nitrogen-containing species like amines, which not only make the dots much brighter, but also sensitive to various analytes. They show the detection of trinitrophenol, one of the most explosive materials in aqueous solutions, with good sensitivity and a detection limit of 300 nM. The stability of these doped dots to various acidic and alkaline conditions make them suitable for sensing applications in different samples and solutions, especially with biological samples, since the conditions are extremely diverse in these samples. The sensitive detection of trinitrophenol in solutions using simple fluorescence based assays can actually be explored for commercial low cost detectors.

Although much remains to be done to make these dots universally applicable, like doping with different molecules to sense specific analytes, the initial platform technology makes these nanoparticles suitable for applications in biosensing to detect materials like toxins, poisons or even explosives.

Dr Dhiraj Bhatia

A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2,4,6-trinitrophenol in aqueous solution
Liping Lin, Mingcong Rong, Sisi Lu, Xinhong Song, Yunxin Zhong, Jiawei Yan, Yiru Wang and Xi Chen
Nanoscale, 2015, 7, 1872-1878. DOI: 10.1039/C4NR06365A

Dr Dhiraj Bhatia is a guest web writer for the Nanoscale blog. He is a chemist by training and received his PhD in Chemical Biology of Nucleic Acids from the National Center for Biological Sciences, TIFR India with an outstanding thesis award in 2013. He joined the Chemical Biology department at the Curie Institute, Paris, as an HFSP long term Postdoctoral Fellow and is currently investigating the mechanisms of endocytois using various chemical biology tools.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

HOT article: On the mechanical and electronic properties of thiolated gold nanocrystals

Whilst undertaking my PhD I was repeatedly warned that the synthesis of nanoparticles was a ‘dark art’ i.e. luck. When, in fact, synthesising these particles actually turned out to be the easy part, whilst the most difficult parts were attempting to achieve stable nanoparticle systems and understanding their resulting properties.

Gold nanocrystals: description and experimental setup.

Even as the field of nanotechnology has undergone considerable expansion there still remain many unanswered fundamental questions. One such question is whether the mechanical and electrical properties of gold nanoparticles are representative of those of the bulk material and how these properties become modified in the presence of an organic coating layer.

Smaali and co-workers have tackled this issue by performing quantitative analysis on the mechanical and electrical properties of thiolated gold nanocrystals. Utilising a recently published procedure, single nanoparticles were grown in a silicon bed with an alkyl-thiol coating on one side and an ohmic contact on the other. To investigate the properties of these nanoparticles, a conducting atomic force microscope (AFM) tip was used, primarily as it offered the ability to interact with the nanocrystals using a variable loaded force with high precision, but also, due to the presence of an ohmic contact, the electrical properties of the nanocrystals and the alkyl-thiol coating could be tested.

Employing AFM measurements and finite elemental analysis (FEA) simulations, the Youngs Modulus of the embedded single nanocrystals was estimated to be 4 times smaller than those of free standing single nanocrystals. The molecular junctions formed between the thiol SAM coating and the individual nanoparticles provided an interesting insight into electronic properties of these materials, with a significant decrease in the tunnel current decay factor and potential barrier height being measured when forces even in the low nN range were applied. These results have been substantiated through FEA and DFT calculations to be a result of strain-induced molecular deformation, which causes a significant impact on the interfacial dipole, resulting in a change in the HOMO position with respect to the Au Fermi energy.

The authors of this study predict that this research could be used as a base model for other studies of functional molecular junctions and mechanical switches, with even small changes in van der Waals forces of a few nN thought to be sufficient to change the electron properties of nanoparticle-based molecular electronic devices.

On the mechanical and electronic properties of thiolated gold nanocrystals
K. Smaali, S. Desbief, G. Foti, T. Frederiksen, D. Sanchez-Portal, A. Arnau, J. P. Nys, P. Leclère, D. Vuillaume and N. Clément
Nanoscale, 2015, 7, 1809-1819. DOI: 10.1039/C4NR06180B

Dr Derek Craig is a guest web writer for the Nanoscale blog. He is a Post Doctoral Research Fellow at the University of St. Andrews based in the fields of Biophotonics and Materials Science. With a background in chemistry, his work mainly focuses on the synthesis of nano to meso materials and the use of imaging techniques to study biological samples.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

HOT article: Nanovolcanos for Label-Free Sensing Applications

Confined surface plasmon sensors based on strongly coupled disk-in-volcano arrays

Research concerning plasmonic materials has erupted in recent years due to the unique optical and electrical properties afforded by nanoscale structures. The optical properties of plasmonic materials can be tuned by altering the distance between the gaps of metallic nanostructures, which support surface plasmon resonances (SPR), on a patterned array. The gaps between the nanostructures produce significantly high electric field enhancements that enable the sensitive detection of biomolecules or chemicals within the gaps.

In this HOT article, Ai and co-workers have produced unique plasmonic substrates for sensing applications: disk-in-volcano arrays. The arrays were formed using colloidal lithography techniques wherein polystyrene spheres (PS) were first deposited onto a substrate coated with a photoresist film. Next, active ion etching (RIE) was used to etch the film followed by a vertical silver (Ag) deposition. Finally, the PS and photoresist film were removed with toluene and ethanol, followed by another Ag deposition. The final structures consist of a cavity containing a disk with small nanogaps between the disk and the wall of the “volcano”. The proximity of the disk to the wall results in plasmonic coupling and greatly enhanced electric fields.

The advantages of the confined sensing area of the disk-in-volcano arrays are low background, due to the decreased detection area, and low reagent consumption, making these arrays particularly cost effective. These favorable advantages mean disk-in-volcano arrays show potential in applications such as biosensing, optical and electrical trapping and single-molecule analysis.

Bin Ai, Limin Wang, Helmuth Möhwald, Ye Yua and Gang Zhang
Nanoscale, 2015, Advance Article. DOI: 10.1039/C4NR05206D

Dr Lee Barrett is a guest web writer for the Nanoscale blog. Lee is currently a postdoctoral researcher in the Centre for Molecular Nanometrology at the University of Strathclyde. His research is currently focused on the development of nanoparticle-based sensors and surface enhanced Raman scattering (SERS).

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

HOT article: Tailoring nanoscale properties of tungsten oxide for inkjet printed electrochromic devices

Nanostructured tungsten oxides (WOX) are an important class of materials owing to their electrochromic, photochromic, photochemical and sensing properties. In this study the morphology evolution of WOX nanoparticles was successfully controlled by altering the acidity level and the reaction time of the hydrothermal synthesis. Varying reaction conditions in this manner allowed the nanoparticles to be controlled to suit the desired printability and electrochromic performance.

The “dual-phase” films deposited via inkjet printing technology exhibited values of transmission modulation over the visible and near infrared regions, as compared to the poor electrochromic performance of amorphous films. Films containing synthesized nanoparticles exhibited 2.5 times higher optical modulation and 2 times faster coloration time when compared with pure amorphous films.

As with other areas of nanoscience, the authors stress the importance of tailoring size and morphology of inorganic particles for a desired specification.

Tailoring nanoscale properties of tungsten oxide for inkjet printed electrochromic devices
Pawel Jerzy Wojcik, Lidia Santos, Luis Pereira, Rodrigo Martins and Elvira Fortunato
Nanoscale, 2015, Advance Article. DOI: 10.1039/C4NR05765A

Dr Mike Barrow is a guest web writer for the Nanoscale blog. He currently works as a Postdoctoral Researcher at the University of Liverpool.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

HOT article: Graphene field effect transistor as a probe of electronic structure and charge transfer at organic molecule–graphene interfaces

Graphene has been the focus of intense research over the past couple of decades. Its unique optical, electrical, thermal and mechanical properties mean that graphene is the ideal 2D material for probing interfacial interactions.  The ability to tune the electronic properties of graphene has enabled the highly sensitive detection of various gases, biomolecules and organic molecules. However, the ability to perform selective measurements using such substrates remains a significant barrier needing to be overcome.

Graphene FET with adsorbed molecules on the surface.

Cervenka and co-workers have devised graphene field electric transistors (FETs) to study the interfacial interactions of two nitrogen hetrocycles, using the knowledge that the electronic structure of graphene can be tuned between n and p-type doping due to the adsorption of electron donating/accepting molecules. Using a combination of electronic transport and XPS measurements this study has shown that molecular recognition can be achieved through the use of FETs due to the presence of non-polar and polar moieties within the analyte molecules.

Significantly, the simplicity of this study opens up the possibility of studying a variety of chemical species selectivity on graphene based sensor devices.

Graphene field effect transistor as a probe of electronic structure and charge transfer at organic molecule–graphene interfaces
Jiri Cervenka, Akin Budi, Nikolai Dontschuk, Alastair Stacey, Anton Tadich, Kevin J. Rietwyk, Alex Schenk, Mark T. Edmonds, Yuefeng Yin, Nikhil Medhekar, Martin Kalbac and Chris I. Pakes
Nanoscale, 2015, 7, 1471-1478. DOI: 10.1039/C4NR05390G

Dr Derek Craig is a guest web writer for the Nanoscale blog. He is a Post Doctoral Research Fellow at the University of St. Andrews based in the fields of Biophotonics and Materials Science. With a background in chemistry, his work mainly focuses on the synthesis of nano to meso materials and the use of imaging techniques to study biological samples.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Designing the nanobiointerface of fluorescent nanodiamonds: highly selective targeting of glioma cancer cells

Schematic structure of the fluorescent nanodiamond crystal coated with a biocompatible methacrylamide copolymer grown from an ultrathin silica shell.

Diamonds have always attracted mankind – whether it be in the form of jewellery or knives to cut hard samples! However, a new form of diamond that has attracted scientific fascination in recent times are nanodiamonds, which are tiny nanocrystals of carbon that can be made fluorescent with doping and surface functionalized with various ligands for specific biological targeting. This has immense potential for the bioimaging community, where biologists always seek bright and stable tools for imaging biological processes for longer times without losing signals.

In the present work, Cigler et al. addressed a challenging system, marking integrins (hallmark molecular markers for cancer) present on cancer cells with nanodiamonds. Most nanoparticles aggregate in biological media and on cell surfaces. The authors intelligently coated the diamonds with specific polymers to prevent their aggregation and then functionalized them with multiple cyclic-RGD motifs (a small tripeptide Arg-Gly-Asp that binds strongly to integrins on the cancer cells). The binding was successful and most importantly, specific uptake of these nanodiamonds through integrins was addressed. The best advantage that the nanodiamonds offer is their extremely bright fluorescent properties, which can be explored to image even single nanodiamonds.

Although much fine tuning and multiplexing with different types of diamonds and receptors is still needed, the successful and specific binding and uptake of these nanodiamonds in cancer cells opens new doors, not only for targeted bioimaging, but it could also be applied further to live animals for diagnosis and sensing.

Dr Dhiraj Bhatia

Designing the nanobiointerface of fluorescent nanodiamonds: highly selective targeting of glioma cancer cells
Jitka Slegerova, Miroslav Hajek, Ivan Rehor, Frantisek Sedlak, Jan Stursa, Martin Hruby and Petr Cigler

Nanoscale, 2015, 7, 415-420. DOI: 10.1039/C4NR02776K

Dr Dhiraj Bhatia is a guest web writer for the Nanoscale blog. He is a chemist by training and received his PhD in Chemical Biology of Nucleic Acids from the National Center for Biological Sciences, TIFR India with an outstanding thesis award in 2013. He joined the Chemical Biology department at the Curie Institute, Paris, as an HFSP long term Postdoctoral Fellow and is currently investigating the mechanisms of endocytois using various chemical biology tools.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Sunlight-assisted route to antimicrobial plasmonic aminoclay catalysts

Pathway illustrating the formation of AC@Ag hybrids.

A novel environmentally friendly method has been presented for the synthesis of dual metallic silver (Ag) and gold (Au) nanoparticles on aminoclay nanosheets (ACN). Typically, synthesis of metal nanoparticles requires the aid of toxic reducing agents or complex chemical synthesis and purification.  Baker and co-workers have proposed a one-pot method that utilizes ACN to stabilize precipitating nanoparticles, thus discovering that photochemical reduction using natural unfocused light to be the most time- and energy-efficient method for producing stable nanodispersions in water.

The dual AgAu materials were investigated as catalysts and anti-microbial agents and interestingly showed better activity than analogues synthesised from gold or silver alone. This article highlights the advantages of green synthesis and the potential of hybrid metallic nanoparticles in two different applications. The authors speculate that this generic method could also be expanded to drug delivery, water purification and biological applications.

Sunlight-assisted route to antimicrobial plasmonic aminoclay catalysts
Sudhir Ravula, Jeremy B. Essner, Wendy A. La, Luis Polo-Parada, Roli Kargupta, Garret J. Hull, Shramik Sengupta and Gary A. Baker

Nanoscale, 2015, 7, 86-91. DOI: 10.1039/C4NR04544K

Dr Mike Barrow is a guest web writer for the Nanoscale blog. He currently works as a Postdoctoral Researcher at the University of Liverpool.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)