Materials Horizons 10th Anniversary ‘Community Spotlight’ – Meet our Emerging Investigators Part 3

Introducing Materials Horizons’ Emerging Investigators 2022.

This year we are pleased to celebrate the tenth anniversary of Materials Horizons. We are so grateful to our fantastic community of authors, reviewers, Board members and readers and wanted to showcase just some of them in a series of ‘Community Spotlight’ blog articles.

In our fifth ‘Community Spotlight’, we feature some of our past ‘Emerging Investigators’ who have contributed their outstanding research to Materials Horizons.

Our Emerging Investigators series highlights early career scientists who have excelled in their field and work to provide quality research and communications in order to contribute to the constant evolution of chemical sciences. We asked some of our past Emerging Investigators about their experience as up-and-coming researchers and how their work has developed from early career stage to now. Check out their interview responses below.

 

Dr. Filip Podjaski, Emerging Investigator 2022

Imperial Collage London, UK

“My parents immigrated from Poland to Germany when I was a child. I grew up bilingually, which was very helpful to learn foreign languages (English, French, Spanish, Russian) and to get in touch with different cultures and mindsets. Since adolescence I was fascinated by the natural sciences and what technologies they enable. Consequently, I studied physics, at the University of Göttingen (D) and in Lyon (FR) with a focus on material properties and energy related applications.

During my PhD in the Nanochemistry department (Prof. Lotsch) at the MPI for Solid State Research (D) and at EPFL (CH), I broadened my horizons in physical chemistry and worked on photocatalysis and electrocatalysis for green hydrogen production as well as on organic materials combining light absorption and battery like energy storage intrinsically – a new and promising technology still fascinating me. I hence stayed at MPI as postdoc and became group leader to drive its development for 3 more years. Research placements at UC Santa Barbara, USA (Prof. Seshadri) and in the Institute of Material Science Seville, ES (Prof. Míguez) strongly enriched me.

Since August 2022, I am a UKRI Research Fellow in the group of Prof. James Durrant, Imperial College London (UK), where I deepen my knowledge in probing fundamental photophysical properties of light driven organic semiconductors on different time scales to better understand and tailor their function for solar fuel production.

My research interests are related to energy conversion applications and tailored material property modifications, which can be driven by light or electricity. They span over the disciplines of physics and chemistry, and partially affect biomedical applications.

 

Being concerned by increasing environmental challenges, I focus on fundamental processes of electrocatalytic and photocatalytic renewable fuel synthesis, mostly for green hydrogen production. Especially complex and organic based semiconductor systems fascinate me in this context, since they are tailorable bottom-up in principle in their structure and function. But there is much to discover about their photophysical properties and its coupling to performance. At Imperial College London, I currently investigate which chemical adaptations are helpful to make organic photocatalysts work efficiently in more natural environments, and not only in ultra-pure lab conditions.

 

Photocharging materials and resulting property modification effects are my other main research interest. Such a function typically relies on ionic interactions and goes in hand with energy and information storage. But relatively little is known about this growing field. I am keen to explore their thermodynamic and kinetic property requirements, to establish efficient structure-property relationships and new technological applications for such novel and adaptive materials. Examples for photocharging materials’ applications I recently showed with colleagues are solar batteries that enable to use renewable electricity on demand, or photo-memristive sensors that intrinsically store concentration information of analytes they can interact with in biological contexts. Light-driven micro-robotics I studied with colleagues from MPI-IS (Prof. Sitti) in biological contexts are another practical example. Remote charging or propulsion by light, as well as its use for local sensing and drug delivery has exciting potential. And if such materials and devices were tailored from organic semiconductors, more technology could become fully green and sustainable.”

 

What inspired you to pursue a career in your specific field of research?

“Primary inspiration probably came from good teachers at school (math, physics, chemistry). I chose a career in applied natural sciences for three reasons: (i) personal curiosity for profound understanding of physics and chemistry and how this translates into technology, (ii) for altruistic reasons – I wanted to contribute something good, new and lasting to our society by research and development, and (iii) because of my creativity and joy in working with different people, which in my opinion is best applied in natural sciences and with academic freedom. Research on renewable energy conversion and sustainable fuel production (photocatalysis, electrocatalysis) was my first choice due to its obvious immediate need, and because it requires interdisciplinary knowledge I wanted to develop. My enthusiastic PhD supervisors Prof. Bettina Lotsch and Prof. Anna Fontcubetra i Morral, as well as my current host and mentor Prof. James Durrant further inspired me as people who take a lot of joy and personal energy from driving fundamental research and understanding. Further inspiration comes from amazing community feedback on the relatively new topic of photocharging materials. I want to focus even more on it in future – for its relevance to energy supply technology and its broad applicability beyond (see next question). The interdisciplinary and creative research required here is also a beautiful challenge and inspiration to me.”

 

What are some of the current trends or emerging areas of research within your field that you find particularly exciting or promising?

“I think the relatively young research area of photocharging materials is particularly exciting and promising. Combing the function of solar cells and batteries in single bifunctional materials is what I feel is highly demanded in times of climate change and (potential) conflicts arising for access to natural resources. However, photo-battery concepts relying on such bifunctional materials are still scarce, have very limited efficiencies and require much more research. Photocharging effects can in principle also affects materials used for photoelectrochemistry or photocatalysis, which become more efficient due to doping or trap passivation going in hand with photo-induced charge accumulation. In parallel, structural and physical or chemical material properties can be modified by photocharging, akin to photo-switches. Their analysis can be used for sensing applications. Related research areas are the just emerging optoionics, where light induces changes in ionic concentrations and conductivity, thereby potentially improving material performance. Since photocharging can also be seen as memristive effect that captures light driven processes over time, its use for information processing is also foreseeable. Memristors as logical circuit elements are also being discussed for so called neuromorphic computing and information processing applications that could well interface with next generation IT or biomedical applications. I would be happy to help developing these areas. It represents a complex field bridging semiconductor physics, battery research, electrochemistry, photocatalysis and engineering, which are rarely combined. So little people have a holistic view and understanding. But I hope that it will change soon and that more and more people will follow up.

In terms of solar fuel production, I think that hydrogen is obviously of highest relevance. Especially when it comes to its generation by cost-efficient organic based materials and in more natural conditions, which is rarely the case, more research is needed. We need hydrogen not only as energy carrier, but also for other (photo)synthetic process such as syngas and ammonia production. In line with this, I am highly convinced of the promise in nitrogen reduction research, since ammonia is one of the products. Besides being a convenient, safe and high energy density fuel, it is also required for many industrialized processes and fertilizer synthesis, while already having a good distribution infrastructure.”

 

Read Filip’s featured Materials Horizons article here:

Photomemristive sensing via charge storage in 2D carbon nitrides.

Andreas Gouder, Alberto Jiménez-Solano, Nella M. Vargas-Barbosa, Filip Podjaski and Bettina V. Lotsch.

Mater. Horiz., 2022,9, 1866-1877. DOI: 10.1039/D2MH00069E

 

 

 

Dr Jie Jang, Emerging Investigator 2022

Central South University, China

 

Jie Jiang is an Associate Professor of School of Physics and Electronics at Central South University. He obtained the B.E. degree (2007), M.E. degree (2009), and the Ph.D. degree (2012) from Hunan University. He was a Post-doctoral Fellow in Nanyang Technological University (2012-2013 in Singapore) and Auburn University (2014-2015 in USA), respectively. His research interests focus on neuromorphic photoelectric hybrid devices based on thin-film oxide and 2D semiconductor materials. He is the Youth Editor in Nano-Micro Letters, Science China-Materials, Brain-X, International Journal of Extreme Manufacturing. He has published as first author/corresponding author about 60 papers which are often highlighted by NPG Asia Materials, Material Views-China, X-MOL, etc.

 

What inspired you to pursue a career in your specific field of research?

“When I was young, I was very interested in nature. When I grew up, I was more interested in the mathematics. However, I wanted to start my research career facing modern industry. Therefore, my current research is focused on the advanced semiconductor devices, especially for the neuromorphic intelligent devices.”

 

How would you summarise the research which lead to your recognition as an Emerging Investigator for Materials Horizons?

“I think the polarization light detector has seen growing attention. However, my research demonstrates that it can also extended to be used in the polarization-sensitive neuromorphic computing which has been never reported. It may provide a promising opportunity for the next-generation of intelligent optoelectronics.”

 

Since becoming an Emerging Investigator, how do you feel your research has developed over time?

“I am very honored to be an Emerging Investigator. It seems that my research has gone well since.”

 

What are some of the current trends or emerging areas of research within your field that you find particularly exciting or promising?

“I think the chip-integrated neuromorphic electronics and polarization-perceptual neuromorphic optoelectronics are two exciting points in my research field.”

 

What advice would you give to aspiring scientists who hope to make a significant impact in their respective fields?

The interest is most important thing. The research should also be guided toward the direction which is most different from others.”

 

What are some of the main challenges or obstacles you have encountered while conducting your research, and how have you overcome them?

“Sometimes my lab doesn’t have the equipment we need. Therefore, we must either get help from others or do the work that we can.”

 

Read Dr Jang’s featured Materials Horizons article here:

Polarization-perceptual anisotropic two-dimensional ReS2 neuro-transistor with reconfigurable neuromorphic vision.

Dingdong Xie, Kai Yin, Zhong-Jian Yang, Han Huang, Xiaohui Li, Zhiwen Shu, Huigao Duan, Jun He and Jie Jiang.

Mater. Horiz., 2022,9, 1448-1459. DOI: 10.1039/D1MH02036F

 

 

 

Dr Mohammad Mirkhalaf, Emerging Investigator 2022

Queensland University, Australia.

Mohammad Mirkhalaf is a Lecturer and ARC DECRA fellow at the Queensland University of Technology (QUT). He has obtained his PhD from McGill University, Master’s from Nanyang Technological University (NTU), and Bachelor’s from Isfahan University of Technology (IUT). After finishing PhD in 2015, he joined the National Research Council of Canada as a postdoctoral fellow working closely with his previous lab at McGill till August 2018 when he joined the University of Sydney. He joined QUT in Jan 2022. His research is on tailoring materials’ internal architecture to achieve properties and functionalities beyond those of constituents.

 

What inspired you to pursue a career in your specific field of research?

“We are all part of nature. After all, we can be perceived as live materials with intelligence. Doing research in natural and bioinspired materials has been perhaps a way for me to try to understand nature and, as such, human better.”

 

 

How would you summarise the research which lead to your recognition as an Emerging Investigator for Materials Horizons?

“Besides research, recognition is a result of being with supportive and understanding people. Let us pay our deepest respect to the people who contribute to providing supportive environments for their younger (and usually less experienced) colleagues.

In terms of research, whatever is triggered by scientific curiosity is exciting: enthusiasm to understand something better or to develop something new or more efficient brings the capacity to do so. We should just not forget that it takes time and continuous effort. I think the research that was kindly highlighted in the emerging investigator series was driven by the excitement to find a way to form ceramics into complex shapes using an efficient and relatively easy pathway.“

 

Since becoming an Emerging Investigator, how do you feel your research has developed over time?

“I think trust is a fundamental element in progress. Trust in your ability to do something but also trust in people who are there to help you. I think being featured as an emerging investigator strengthened both elements (of trust) in me. Thanks for the opportunity.”

 

What are some of the current trends or emerging areas of research within your field that you find particularly exciting or promising?

“We do certain things to pay our bills and have a protective roof. But beyond that, whatever we do should be responsibly done for the next generations. They are our continuation. With their being is our being. So in the future, I will aim to find ways to perform my research (which is on developing new materials and architectures) sustainably from nature, for nature (all beings), to nature.

We are going to lack resources and so are in search of life/resources on other planets. Much research, including on new materials, is channelled towards this goal. The question is: if in this search for life in other planets, we are harming our own earth, aren’t we defeating the purpose? We perhaps need to first keep our mother earth as intact as possible through sustainable technologies and then satisfy our other curiosities based on this principle of sustainability. We (scientists and engineers) can play a major role here. Other areas that interest me currently are using engineering mechanisms to reversibly and drastically tailor the internal architecture of materials, and the ethical aspects of live materials and artificial intelligence.”

 

What advice would you give to aspiring scientists who hope to make a significant impact in their respective fields?

“I am still in the early- to-mid stages of my career, so I am not sure if I am eligible to answer this question. But I am happy to have a discussion on this. I guess one important aspect is to go to the core of the problem. Every problem has a surface, but the beauty lies within the deeper layers. For example, a few hundred years ago, a designer could think of this problem: how thick the feet of a wooden chair should be to resist one’s weight? Or going to deeper layers, one could ask: what governs the deformation and failure of the chair’s feet? How can we prevent excessive deformation/failure? Are these governing rules the same for all materials? Trying to answer the latter set of questions has led to significant contributions to the mechanics of materials. Answering the former question would result in a chair on which people could sit. Both are valuable but satisfy different desires.

I think another key is trust as we discussed. There are elite people in academia who know much more than early career researchers about academic progress/potential. Being in touch with these people and trusting them brings stability and focus to a curious soul.”

 

What are some of the main challenges or obstacles you have encountered while conducting your research, and how have you overcome them?

“Our biggest enemy lies within us. In search of truth, one should be truthful. I must admit it might be hard for a scientific mind to carry the burden of a societal construction and politics that tend to be quite good at (sometimes) bending the truth. But we (humans) have made significant progress in discovering the essence of things properly, and I think we will get better. Intellectuals, many of whom work in academia (including my current and previous mentors), have taught us the way to scientific discoveries: reading/understanding the literature, discussing it, accepting criticisms and strong arguments even though they go against our thoughts, fact-checking, and readiness to reconstruct thoughts if needed. These are the principles I try to follow to tackle challenges. Thanks for the opportunity to discuss thoughts.”

 

Read Mohammad’s featured Materials Horizons article here:

Rationally-designed self-shaped ceramics through heterogeneous green body compositions.

Zizhen Ding, Hala Zreiqatbc and Mohammad Mirkhalaf.

Mater. Horiz., 2022,9, 2762-2772. DOI: 10.1039/D2MH00785A

 

 

 

Dr Kai Wang, Emerging Investigator 2022

Soochow University, China

 

Kai Wang received his BSc degree from the Department of Materials Science and Engineering, Beihang University in 2012, and received his PhD degree from the Technical Institute of Physics and Chemistry of Chinese Academy of Sciences in 2017. Then, he carried out postdoctoral research at the Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University.  Now, he is an associate professor at Soochow University. His research interest mainly focuses on high-performance organic optoelectronic materials and their device applications.

 

How would you summarise the research which lead to your recognition as an Emerging Investigator for Materials Horizons?

“The purpose of the research is to address fundamental questions regarding the spectral broadening and concentration quenching in solid-state multiple resonance (MR) type thermally activated delayed fluorescence (TADF) systems. Previous studies often overlooked or briefly mentioned these issues as they focused primarily on developing new materials. However, these issues are crucial in understanding the behaviour of MR-TADF systems in solid states. Our research is the first to comprehensively investigate and provide answers to these general questions. We have determined that spectral broadening is caused by the formation of excimers resulting from π-π interactions, while concentration quenching is a result of triplet exciton annihilation. These findings are essential for a deeper understanding of the behaviour of MR-TADF systems.”

 

What are some of the current trends or emerging areas of research within your field that you find particularly exciting or promising?

“In my view, the emerging category of materials known as multiple resonance (MR) emitters and their associated device applications are highly promising in the realm of organic light-emitting diodes (OLEDs). These materials have the ability to achieve remarkably efficient narrowband emission, surpassing even that of inorganic systems. This challenges our existing understanding of organic systems and allows OLEDs to remain competitive in the era of ultrahigh definition displays. Moreover, they hold significant potential for use in organic laser diodes, a shared aspiration among researchers in the field of organic optoelectronics.”

 

Read Kai Wang’s featured Materials Horizons article here:

Distinguishing the respective determining factors for spectral broadening and concentration quenching in multiple resonance type TADF emitter systems.

Feng Huang, Xiao-Chun Fan, Ying-Chun Cheng, Hao Wu, Yi-Zhong Shi, Jia Yu, Kai Wang, Chun-Sing Lee and Xiao-Hong Zhang.

Mater. Horiz., 2022,9, 2226-2232.  DOI: 10.1039/D2MH00511E

 

 

We hope you enjoy reading these interviews from our Emerging Investigators. You can find all our past Emerging investigator editorials and featured articles here:

 

Emerging Investigators 2020/2021

Emerging Investigators 2022/2023

 

Or to read more of our community spotlight blog, return to the home page here

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Materials Horizons Community Spotlight – Celebrating ten years of insight and impact with our scientific collaborators

Welcome to the Materials Horizons Community Spotlight

To celebrate our wonderful community of authors, reviewers, and board members we would like to introduce you to them, their roles in the community and their current research through our Community Spotlight blog series. This special series include some of the people who have, over the past 10 years, helped to shape and transform Materials Horizons into the cutting edge, insightful and impactful journal that it is today.

This collection of blog posts started in July 2023 with the first introduction to our esteemed Advisory Board. Each month since we have followed this with introductions to some of our very first Materials Horizons Emerging Investigators from 2020 and 2021 and a selection of our nominated Outstanding Reviewers from past years.

 

Read the first of the Community spotlight series here:

Materials Horizons Advisory Board

Meet the Advisory Board Part 1

Meet the Advisory Board Part 2

Meet the Advisory Board part 3

 

 

 

 

Read the second edition of the Community spotlight series here:

Materials Horizons Emerging Investigators

Introducing our Emerging Investigators – Part 1

 

 

Introducing our Emerging Investigators – Part 2

Introducing our Emerging Investigators – Part 3

 

 

 

Finally in our third edition of the series:

Materials Horizons Outstanding Reviewers 

 

Meet some of our Outstanding Reviewers


 

 

We would like to offer a heart felt thank you to all our scientific community who play a role in shaping Materials Horizons into the successful journal that it is today. We hope you enjoy reading more about all of these fantastic people and keep your eyes peeled for more additions to the Community Spotlight series!

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Enhancing photodynamic therapy (PDT) with a biocompatible pure organic nanocage

By Quan Li, Community Board member.

The advantages of minimal invasiveness, excellent biocompatibility, and high spatiotemporal control manners have enabled photodynamic therapy (PDT) to be utilized as a novel alternative to conventional cancer treatment approaches. PDT relies on photosensitizers (PSs) to photochemically react with the ground-state oxygen molecules (oxygen, 3O2) or small molecules, generating highly toxic reactive oxygen species (ROS) under light irradiation in situ, to further induce tumor cell apoptosis or necrosis, vascular damage or cancer-mediated immunity, for example.

Since the first discovery of PSs based on hematoporphyrin derivatives (HpD) in 1960, the porphyrin-based PSs and their PDT performance have been extensively explored. Currently, various porphyrin-based PSs with different structures such as verteporfin, porfimer sodium, temoporfin and photocarcinosin have been approved for clinical practice. Despite great progress in clinical practice, the ROS generation of these porphyrin-based PSs is still far from satisfactory. One of the main issues is their large planar and rigid structures, which tend to form tight aggregates with strong π…π interactions at high concentrations in aqueous solutions or at tumor tissues. Such π…π stacking will cause diminished fluorescence and compromised ROS, leading to low PDT efficacy.

To weaken π…π stacking of porphyrin-based PSs, boost the generation of ROS, and enhance the PDT efficacy, work by Zhu, Zhang et al recently reported a novel biocompatible pure organic porphyrin nanocage (Py-Cage) with significantly improved ROS generation and PDT performance. Their design of the Py-Cage highlights the large cavity and long distance which effectively weaken the π…π stacking effect of porphyrins within the nanocage. Hence this Py-Cage exhibits excellent anti-ACQ features at high concentrations in aqueous solution (Figure 1a,b,c).

Fig 1. (a) and (b) Schematic comparison between traditional planar porphyrin-based photosensitizers and the porous porphyrin nanocage in attenuating the ACQ effect. (c) Schematic illustration of the enhanced ROS generation for cationic organic nanocage Py-Cage. (d) Tumor pictures of 4T1 tumor-bearing mice after different treatments (for Py-cage samples). (e) Schematic of Py-Cage NPs synthesized by a nanoprecipitation method with DSPE-PEG2000 as the encapsulation matrix. (f) Tumor pictures of 4T1 tumor-bearing mice in different groups (for Py-cage NPs samples). Reproduced from DOI: 10.1039/D3MH01263H with permission from the Royal Society of Chemistry.

A systematic comparative investigation shows that the Py-Cage can largely boost ROS generation that is superior to its PyTtDy precursor as well as widely used PSs, including Chlorin E6 (Ce6) and Rose Bengal (RB). Having established the excellent ROS generation and bright fluorescence of the Py-Cage, the team then evaluated its in vitro PDT performance using mouse breast cancer 4T1 cell. The data shows the Py-Cage can generate a large amount of ROS in cells under white light irradiations to induce cell apoptosis and death. Encouraged by the very promising in vitro results, Zhu, Zhang et al. further conducted in vivo PDT trials of the Py-Cage using a 4T1 tumor bearing mouse model. Their findings indicate that the tumors in the Py-Cage+light group showed the smallest sizes and lowest tumor weights among all the tested groups (Figure 1d), reflecting the best tumor growth inhibition performance of Py-Cage under light. The biocompatibility of the Py-Cage was also investigated by analyzing the blood routine and biochemical parameters of the rats after 48 h injection through tail veins. All the results show that the Py-Cage does not cause infection and bleeding symptoms and no damage to the liver and kidney function was observed. Other parameters such as cholesterol (CHO), triglyceride (TG), high-density lipoprotein cholesterol (HDL), low-density lipoprotein (LDL), glucose level were also not affected by Py-Cage. Moreover, the team prepared the Py-Cage nanoparticles by a nano-precipitation method to improve its water disability and biocompatibility. Similar in vitro and in vivo PDT experiments with these Py-Cage NPs were conducted and the NPs also proved to be excellent in biocompatibility and PDT efficacy (Figure 1e,f).

In summary, this work demonstrated the first porphyrin-based pure porous organic nanocage (Py-Cage) with a large cavity volume to promote both type-I and type-II ROS generation. Through comprehensive in vitro and in vivo studies, the Py-Cage proved to be extremely powerful in PDT with excellent biocompatibility and enhanced anti-tumor efficacy. The design of Py-Cage with a pure organic porous skeleton could avoid the π…π stacking to fully utilize the excited triplet state of PSs to generate ROS. This design strategy will offer enormous prospects for preparing novel and effective PSs with excellent biocompatibility for PDT and related phototheranostic applications.

 

To find out more, please read:

A biocompatible pure organic porous nanocage for enhanced photodynamic therapy
Zhong-Hong Zhu, Di Zhang, Jian Chen, Hua-Hong Zou, Zhiqiang Ni, Yutong Yang, Yating Hu, Ruiyuan Liu, Guangxue Feng, Ben Zhong Tang
Mater. Horiz. 2023, 10, 4868-4881, DOI: 10.1039/D3MH01263H

 


About the blogger


 

 

Quan Li is currently a Professor at Tianjin University of Traditional Chinese Medicine and a member of the Materials Horizons Community Board. Prof. Li’s research lab focuses on the design and preparation of soft matter materials based on light-responsive molecular machines and Chinese herbal medicine for biomedical applications, including anti-cancer, skin disease treatment, and others.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Congratulations to the winners of the Materials Horizons prizes at MATSUS Fall 2023

Materials Horizons were delighted to sponsor two student prizes at the #BIOELCHEM symposium at MATSUS Fall 2023 held in Torremolinos, Spain from 16 – 20 October. Congratulations to Amrita Singh-Morgan (ETH Zurich) for being awarded the best poster presentation prize and Christopher Dreimol (ETH Zurich) for being awarded the best oral presentation. Find out more about our winners below:

Amrita Singh- Morgan

Originally from Leeds, Amrita studied Chemistry at the University of Edinburgh where she had the opportunity to do a year abroad in Switzerland. Persuaded by the alpine landscapes, she decided to do a PhD at ETH Zurich in the group of Prof. Mougel, where she now researches heterogeneous electrocatalysis.

 Using CO2 as a chemical feedstock is a promising method to produce valuable chemicals and fuels without fossil or biomass resources. Flue gas, which is formed from the combustion of fossil fuels, constitutes a major localised source from which CO2 could be captured and converted. Amrita’s research involves the electrochemical conversion of CO2 in tandem with another harmful component of flue gas, NOx, to valorise the products formed and maximise the environmental benefit.

Title of her poster: Until NOthing’s Left: Electrochemical Conversion of Nitric Oxide to Ammonia from Dilute Gas Streams

 

Christopher Dreimol

 

 

After completing an apprenticeship in the field of mechanical engineering at Kathrein SE (today Ericsson) in Rosenheim, Christopher Dreimol studied Biomimetics (B.Sc.) in the HS Bremen. He continued with a master’s in production engineering with a focus of material science at the University of Bremen that he finished with a master thesis at ETH Zürich working on bio-inspired materials together with Prof. André R. Studart. Today as a Ph.D. student, Christopher Dreimol works on sustainable wood-based electronics for smart buildings, sensors, soft electronics, and energy storage devices together with Prof. Dr. Ingo Burgert in the Wood Material Science Group at ETH Zürich and EMPA.

 

 

Title of his talk: Iron-Catalyzed Laser-Induced Graphitization: A Novel Approach to Produce Sustainable, Bio-Inspired Electrodes with Tunable Iron Phases.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Monitoring the Evolution of Segmental Order in Conjugated Polymers During Crystallization

By Robert M. Pankow, Community Board Member.

Conjugated polymers (CPs) are transformative materials that have facilitated numerous advancements in the field of soft-matter electronics. Their low-cost, high structural tunability, and robust mechanical properties have made them desirable materials for broad range of applications, including in energy capture and storage, chemical and biological sensors, electronic skin, and electronic display devices. Recently, significant efforts have been made to develop intrinsically flexible and stretchable CPs and to understand the fundamental principles and structural characteristics that impart these elastomeric properties without impairment to charge transport. Central to this has been extensive characterization of the polymer morphology and microstructure, which yielded the discovery that local segmental order can facilitate efficient long-range charge transport in the amorphous domains of the polymer. However, directly probing the local segmental order in polymers and distinguishing the contributions of this domain towards the charge transport and physicochemical properties from that of the crystalline domains, which are defined by long-range ordering, remains challenging.

Now, a highly collaborative and extensive study by Luo et al. describes the development of a new technique for monitoring the subtle changes in the local segment order and amorphous fractions of the polymer microstructure by integrating Raman spectroscopy with fast-scanning calorimetry (FSC). The authors targeted a structurally diverse set of polymers to broadly classify their findings.

 

Figure 1. Modulating and probing microstructure of conjugated polymers by integrated ultrafast calorimetry and micro-Raman spectroscopy. Left: Schematic of this integrated technique. The time-temperature program used in this study was carried out by the chip sensor temperature controller. The growth of crystalline domain was identified by the evolution of melting peak collected through FSC. The degree of segmental order was analyzed by the Raman shift of C=C modes through resonant micro-Raman spectroscopy. Reproduced from DOI: 10.1039/D3MH00956D with permission from the Royal Society of Chemistry

Namely, analogs based on poly(3-hexylthiophene-2,5-diyl) (P3HT) and poly{2,2′-[(2,5-bis(2-hexyldecyl)-3,6-dioxo-2,3,5,6- tetrahydropyrrolo[3,4-c ]pyrrole-1,4-diyl)dithiophene]- 5,5′-diyl-alt-thiophen-2,5-diyl} (PDPP3T or PDPPT), which are prevalent throughout organic electronics. The polymers were first subjected to a carefully devised time-temperature program to erase the thermal history of the polymers by first subjecting the polymer samples to temperatures above their melting point (Tm). Following subsequent thermal quenching and annealing steps, the Raman and FSC measurements were recorded. By monitoring the evolution of the Raman spectra and tracking the shifts in C=C/C-N stretches with increasing annealing time, minute changes in the segmental order could be monitored. It was observed that the extent of segmental order saturates before maximum crystallinity is achieved and that the annealing temperature could be specifically tailored for the polymers to achieve a highly ordered microstructure with desired levels of crystallinity.

Next, polymer segmental order was correlated with the segmental dynamics and charge transport properties by using alternating current (ac) chip-calorimetry and fabricating organic field effect transistors (OFETs). It was found that the rigid amorphous fraction (RAF) plays a significant role in promoting segmental order, and that there is a strong correlation between the polymer segmental order and the OFET charge-carrier mobility. Overall, the findings, magnitude, and scope of this study makes it a pivotal work for the field of organic electronics, and it should have resounding impact throughout material science.

To find out more, read the full manuscript here:

Real-time correlation of crystallization and segmental order in conjugated polymers

Shaochuan Luo, Yukun Li, Nan Li, Zhiqiang Cao, Song Zhang, Michael U. Ocheje, Xiaodan Gu, Simon Rondeau-Gagné, Gi Xue, Sihong Wang,  Dongshan Zhou and Jie Xu

Mater. Horiz., 2023, Advance Article, DOI: 10.1039/D3MH00956D

 


About the blogger


Robert M. Pankow is an Assistant Professor at The University of Texas at El Paso and a member of the Material Horizons Community Board. Dr. Pankow’s research focuses on conjugated polymer synthesis, sustainable chemistry, and organic electronics. You can follow him on X (formerly Twitter) @RobertPankow.
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Meet our new Advisory Board member- Paulette Clancy

Materials Horizons are delighted to welcome Professor Paulette Clancy as the newest member of the Advisory Board. 

Paulette Clancy is the Edward J. Schaefer Professor of chemical and biomolecular engineering. More recently, she became the director of research for the AI-X Foundry. She is the Associate Director of the Johns Hopkins Center for Integrated Structure-Mechanical Modeling and Simulation (CISMMS), and a fellow of the Hopkins Extreme Materials Institute (HEMI) and AIChE. She spent over 30 years teaching at Cornell before moving to Johns Hopkins in 2018 to become the inaugural department Head of ChemBE.

Clancy leads one of the top groups in the country studying atomic- and molecular-scale modeling of semiconductor materials, ranging from traditional silicon-based compounds to all-organic materials. Her group’s research comprises four main areas: advanced organic materials (covalent organic frameworks, antibacterial oligomers, organic electronics); algorithm development (force field development, machine learning, and Bayesian optimization); electronic materials (particularly III-IV semiconducting materials; and nucleation and crystal growth (hybrid organic/inorganic perovskites and quantum dot nanocrystals). Her lab focuses on studies of advanced materials processing and nucleation, including understanding the links between processing, structure, and function.

Her group is at the forefront of developing new Bayesian optimization methods to encode expert knowledge and intuition, creating optimal conditions for making energy-efficient solar cells, close-to-perfect quantum dots, and discovering polymorphs of electronic materials for shape memory applications.

She is a fierce long-term advocate for the increased representation of women and those from groups under-represented in engineering and the physical sciences.  She was the founding chair of a faculty group, “Women in Science and Engineering” for Cornell University. Among her awards for that advocacy is the American Institute of Chemical Engineers (AIChE) National Women’s Initiatives Mentoring Award. She is a member of the mentoring team for Project Elevate, a DEI initiative between Hopkins in partnership with NYU and CMU.

 

Check out some of Paulette’s recent RSC publications:

A comprehensive picture of roughness evolution in organic crystalline growth: the role of molecular aspect ratio

Jordan T. Dull, Xiangyu Chen, Holly M. Johnson, Maria Clara Otani, Frank Schreiber, Paulette Clancy and  Barry P. Rand

Mater. Horiz., 2022,9, 2752-2761, DOI: 10.1039/D2MH00854H

 

A new metric to control nucleation and grain size distribution in hybrid organic–inorganic perovskites by tuning the dielectric constant of the antisolvent

Blaire A. Sorenson, Lucy U. Yoon, Eric Holmgren, Joshua J. Choi and Paulette Clancy

J. Mater. Chem. A, 2021,9, 3668-3676, DOI: 10.1039/D0TA12364A

 

A multiscale approach to uncover the self-assembly of ligand-covered palladium nanocubes

Xiangyu Chen, Thi Vo and Paulette Clancy

Soft Matter, 2023, Advance Article, DOI: 10.1039/D3SM01140B

 

Read our interview with Paulette below:

What does it mean to you to join the Advisory Board of Materials Horizons?

I feel honored to join the Advisory Board because this is such an exciting and relatively new journal. It brands itself as being “transformative” and that’s how I have found the research that it publishes. I am glad to be part of the team to keep up the wonderful momentum that it has.

What is the current biggest challenge you face in your field?

I work in the area of machine-learning guided materials discovery. The biggest challenge I currently face is to sift through the burgeoning number of new methods in this hot area and learn which ones are truly exciting and ground-breaking.

Why do you feel that researchers should choose to publish their work in Materials Horizons?

MH has it all: Thoughtful and helpful reviewers, short time to triage and review, and careful selection of strong papers.

Can you tell us about one of your latest Materials Horizons publications?

I actually have some of my most exciting new Bayesian optimization algorithm development under review with MH right now, so fingers crossed for that one. My last paper involved a joint computational (us)-experimental (Princeton) study of the thin-film growth of molecules that could be used for electronic devices. To function well in that regard, you need to create films that are as smooth as possible. Our paper looked at a few candidates for new electronic materials and showed that you need to take a holistic view of the growth process rather than relying just on the traditional step-edge energy barriers to arbitrate between rough (unwanted) and smooth growth (desirable).  We were thrilled to be recognized with an “Editor’s Choice” designation and the cover. 

 

Paulette’s last Materials Horizons article was featured on the issue front cover

Please join us in welcoming Paulette to the Materials Horizons Advisory Board!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Materials Horizons’ New Community Board Members

Join us in welcoming our new Materials Horizons Community Board members

The Materials Horizons Community Board provide an invaluable link between the editorial office and emerging chemistry, they are our eyes and ears on the ground, allowing us to better connect with other early-career researchers. Since its inception in 2014, we have enjoyed working together with these board members to facilitate student, postdoctoral and early-career researcher engagement, through symposia support, journal clubs, webinars, special article collections and many other activities.

Over the summer, we requested nominations from the materials chemistry academic community and were thrilled with the high calibre of candidates nominated. We are delighted to share our 30 new appointees with you who, together with continuing members, make up a Materials Horizons Community Board of 50 international researchers at different stages of their early careers, ranging from PhD candidates to Professors.

From Left to right: Minah Lee, Korea Institute of Science & Technology, South Korea. • Subhajit Pal, University of California, Berkeley, United States. • Fang-Chen Liang, National University of Singapore, Singapore. • Kostas Parkatzidis, ETH Zurich, Switzerland. • Kelsey DeFrates, University of California, Berkeley, United States. • Haegyum Kim, Lawrence Berkeley National Laboratory, United States. • Jing Xie, Sichuan University, China • Raul Marquez-Montes, The University of Texas, United States. • Wen Shi, Sun Yat-sen University, China. • Valerio Piazza, Ecole Polytechnique Federale de Lausanne, Switzerland. • Shaohua Zhang, Radboud University, Netherlands • Olga Guselnikova, National Institute for Materials Science, Japan. • Qiaobao Zhang, Xiamen University, China. • Shiv Singh, CSIR - Advanced Materials and Processes Research Institute, India. • Anna Stejekalova, Harvard University, United States. • Sahid Zaman, Université du Québec à Trois-Rivières, Canada. • Felix Utama Kosasih, Nanyang Technological University, Singapore. • Xiaojuan Ni, The University of Arizona, United States. • Danila Merino, Polymat Institute, UPV/EHU, Spain. • Yunmao Zhang, Xiamen University, China. • Xianbiao Fu, Technical University of Denmark, Denmark. • Ruijuan Xu, North Carolina State University, United States. • Shyamapada Nandi, Vellore Institute of Technology Chennai, India. • Edison Ang Huixiang, Nanyang Technological University, Singapore. • Hassan Abdellatif, Cairo University, Egypt. • Guanjie He, University College London, United Kingdom • Josh Bailey, Queen's University Belfast, Northern Ireland. • Jieun Yang, Kyung Hee University, South Korea. • Raffaello Mazzaro, University of Bologna, Italy. • Ivana Qiangi Lin, University of Twente, Netherlands.

Please join us in welcoming our 30 new Community Board members:

Discover the full Community Board

You can keep up to date with the activities of our Community Board members on our blog. Our companion journal Nanoscale Horizons has also welcomed new members to their community board, and you can find out more about their new members on their blog. We will be highlighting the members of our Community Board over the coming months in a series of interviews and look forward to sharing these with you soon.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Materials Horizons 10th Anniversary Cover

 

As part of the 10th Anniversary celebrations, a special cover image was created based on your votes for the best 10 covers from the last 10 years.

2014

Ultrasonication-switched formation of dice- and cubic-shaped fullerene crystals and their applications as catalyst supports for methanol oxidation
Ying Xu, Xiang Chen, Fupin Liu, Xi Chen, Jianhe Guo and Shangfeng Yang  

2015

Versatile third components for efficient and stable organic solar cells
Pei Cheng and Xiaowei Zhan

2016 

Mechanical meta-materials

Amir A. Zadpoor

2017

A new class of chiral semiconductors: chiral-organic-molecule-incorporating organic–inorganic hybrid perovskites
Jihoon Ahn, Eunsong Lee, Jeiwan Tan, Wooseok Yang, Bokyung Kim and Jooho Moon

2018

PLUS-M: a Porous Liquid-metal enabled Ubiquitous Soft Material

Hongzhang Wang, Bo Yuan, Shuting Liang, Rui Guo, Wei Rao, Xuelin Wang, Hao Chang, Yujie Ding, Jing Liu and Lei Wang

2019

Seamless interconnections of sp2-bonded carbon nanostructures via the crystallization of a bridging amorphous carbon joint
Longze Zhao, Yong Cheng, Qiaobao Zhang and Ming-Sheng Wang

2020

Air-stable means more: designing air-defendable lithium metals for safe and stable batteries
Jingyi Wu, Lixia Yuan, Zhen Li, Xiaolin Xie and Yunhui Huang

2021

Tilt and shift polymorphism in molecular perovskites
Stefan Burger, Shivani Grover, Keith T. Butler, Hanna L. B. Boström, Ricardo Grau-Crespo and Gregor Kieslich

image created by Dr Johannes Richers (Jo Richers Studio)

2022

Semi-paracrystallinity in semi-conducting polymers
Sara Marina, Edgar Gutierrez-Fernandez, Junkal Gutierrez, Marco Gobbi, Nicolás Ramos, Eduardo Solano, Jeromy Rech, Wei You, Luis Hueso, Agnieszka Tercjak, Harald Ade and Jaime Martin

2023

Physical crosslinked hydrogel-derived smart windows: anti-freezing and fast thermal responsive performance
Gang Li, Jiwei Chen, Zhaonan Yan, Shancheng Wang, Yujie Ke, Wei Luo, Huiru Ma, Jianguo Guan and Yi Long

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Materials Horizons 10th Anniversary ‘Community Spotlight’. Meet more of our esteemed Advisory Board Members!

Introducing the Materials Horizons Advisory Board – Part 2.

This year we are pleased to celebrate the tenth anniversary of Materials Horizons. We are so grateful to our fantastic community of authors, reviewers, Board members and readers and wanted to showcase just some of them in a series of ‘Community Spotlight’ blog articles.

In this ‘Community Spotlight’, we feature some more of the Advisory Board members who have supported Materials Horizons over the years. We have asked them what they like most about being on the journal’s Advisory Boards, about their recent publications and about their own insights into the future of materials chemistry. Check out their interview responses and related articles below.

Christopher Bettinger, Advisory Board Member

Carnegie Mellon University, USA

Photograph of Christopher Bettinger

Christopher Bettinger is a Professor at Carnegie Mellon University in the Departments of Materials Science and Engineering and Biomedical Engineering. He directs the laboratory for Biomaterials-based Microsystems and Electronics at CMU, which designs materials and interfaces that integrate medical devices with the human body. Prof. Bettinger is also a co-inventor on several patents and Co-Founder and CTO of Ancure, an early-stage medical device incubator. Prof. Bettinger received an S.B. in Chemical Engineering, an M.Eng. in Biomedical Engineering, and a Ph.D. in Materials Science and Engineering as a Charles Stark Draper Fellow, all from the Massachusetts Institute of Technology.  He completed his post-doctoral fellowship at Stanford University in the Department of Chemical Engineering as an NIH Ruth Kirschstein Fellow.

What do you think of Materials Horizons as a place to publish impactful materials chemistry research?

 ‘Materials Horizons is a high-impact journal that features multidisciplinary research. The breadth of the articles is impressive and attracts a broad audience that is interested in innovative research. As an author, I am particularly impressed by the efficiency of the review process, and which translates to the ability to publish rapidly. Materials Horizons therefore is a great place to publish for quick moving fields.’

Where do you see the materials chemistry field in the next 10 years?

‘Materials chemistry underpins most of the advanced technologies of our generation ranging from RNA vaccines to clean energy to space travel. The scope and scale of the impact of the materials chemistry field is stunning. I’m personally interested in understanding how biomedical materials can help scientists and engineers interrogate and modulate organ systems such as the gastrointestinal tract.’

 

You can read Christopher’s latest articles in Journal of Materials Chemistry B here:

Poisson–Nernst–Planck framework for modelling ionic strain and temperature sensors.

Gaurav Balakrishnan, Jiwoo Song, Aditya S. Khair and Christopher J. Bettinger.

J.Mater. Chem. B, 2023,11, 5544-5551. DOI: 10.1039/D2TB02819K

 

Electrochemical-mediated gelation of catechol-bearing hydrogels based on multimodal crosslinking.

Chenchen Mou, Faisal Ali, Avishi Malaviya and Christopher J. Bettinger.

J.Mater. Chem. B, 2019,7, 1690-1696. DOI: 10.1039/C8TB02854K

 

 

Ramanathan Vaidhyanathan, Advisory Board Member

IISER Pune, India

Photograph of Ramanathan Vaidhyanathan

Dr. R. Vaidhyanathan obtained his Ph.D. from the Jawaharlal Nehru Centre for Advanced Scientific Research under Prof. C. N. R. Rao and Prof. S. Natarajan. He worked as a postdoc with Prof. M. J. Rosseinsky at the University of Liverpool and as a research associate with Prof. George Shimizu at the University of Calgary. He started his independent research career as an assistant professor in IISER Pune in 2012. Currently, he is a Professor at IISER Pune. His research focuses on developing Advanced Porous Materials such as metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs) and their nanocomposites for environmental and energy applications. He has published over 102 papers and has 11 patents filed from IISER Pune. He has been rewarded with several honours, including the Fellowship of Royal Society of Chemistry (2022), C.N.R. Rao Award. National Prize for research in Physical and Inorganic Chemistry (2021), Materials Research Society of India Medal (2019), Chemical Research Society of India Medal (2018), IUSSTF funding won jointly with Temple University (Chief Co-PI, 2018), Sakurai Science Program (SSP), Osaka University, Japan (2016), Best Emerging Young Scientist (Chemical Frontiers), Goa, (2017). He serves as an Associate Editor in Chemistry of Materials and as an Editorial Board Member of ACS Materials Letters and Nature Scientific Reports. He is the Advisory Board Member of Nanoscale Horizons and Materials Horizons.

What do you like most about being on the Advisory Board for Materials Horizons?

‘Excellent opportunity. Such a fantastic journal covering a whole spectrum of materials. Being an Advisory Board Member gives me the commitment and responsibility to bring visibility and promote the latest happenings and upcoming young researchers in porous materials.’

What do you think of Materials Horizons as a place to publish impactful materials chemistry research?

‘Again, among the top materials journals, the editorial and marketing teams are engaged in promoting the published articles. This is very critical for many researchers who work on topical areas. Importantly, the “concept note” for every article published in Materials Horizons provides a plain language note of the work, making it reachable to a wide scientific audience and opening collaboration opportunities.’

Where do you see the materials chemistry field in the next 10 years?

Nothing but top. It has become such a fantastic interdisciplinary research area. Nowadays, very little work happens within individual groups. The rapid development of technology and the excellent government support for research from many developing and almost-developed countries has expanded the capability of individual groups. Now many active groups are not ready to settle for only fundamental investigations; there is a vibrant, collaborative environment between groups leading to research in materials that is more targeted and holistic. Given this, I see Materials Chemistry inciting every field of Science and Technology.’

In your opinion, how could members of the community be more involved with the journal?

‘I see the materials journals of RSC being extremely focused and active in communicating with the members and encouraging them to contribute to specialized topics. And their attempt to invite senior researchers to nominate, support and endorse high-flying young researchers is simply superb. Keep going.’

Could you provide a summary of your most recent Materials Horizons publication?

‘I would not call it the most recent, but we have published an excellent work on flexible MOFs. We employed the concept of “Hard Soft Gate Control (HSGC)” which involves tuning the openness of the MOF framework by exploiting the coordination flexibility between the metal and the basic ligand by tuning the metal’s hardness. It resulted from an intense collaboration between Woo and co-workers from U Ottawa and us.’

 

Discover some of Ramanathan’s work across our Horizons journals here:

Imparting gas selective and pressure dependent porosity into a non-porous solid via coordination flexibility.

Shyamapada Nandi, Phil De Luna, Rahul Maity, Debanjan Chakraborty, Thomas Daff, Thomas Burns, Tom K. Woo and Ramanathan Vaidhyanathan.

Mater. Horiz., 2019,6, 1883-1891. DOI: 10.1039/c9mh00133f

 

Hydroxide ion-conducting viologen–bakelite organic frameworks for flexible solid-state zinc–air battery applications.

Deepak Rase, Rajith Illathvalappil, Himan Dev Singh, Pragalbh Shekhar, Liya S Leo, Debanjan Chakraborty, Sattwick Haldar, Ankita Shelke, Thalasseril G. Ajithkumarc and Ramanathan Vaidhyanathan.

Nanoscale Horiz., 2023,8, 224-234. DOI: 10.1039/d2nh00455k

 

Moyuan Cao, Advisory Board Member

Nankai University, China.

Photograph of Moyuan Cao

 

Dr. Moyuan Cao is currently a professor and principal investigator at school of materials science and engineering, Nankai University, China. He received his B. Eng. Degree (2010) and M. Sc. Degree (2013) in Macromolecular Science and Engineering from Zhejiang University, China. In 2016, he received Ph. D. Degree in materials sciences under the supervision of Prof. Lei Jiang at Beihang University and Chinese Academy of Sciences. He is also a member of Haihe Laboratory of Sustainable Chemical Transformations (Tianjin, China) and Smart Sensing Interdisciplinary Science Center of Nankai University. He has published over 70 peer-review papers in Matter, Adv. Mater., Mater. Horiz., Adv. Funct. Mater., etc. His citation number is over 4600 times with an H-index of 36. He serves as Editorial member of Frontiers in Chemistry, Polymers, Chinese Chemical Letters, Transactions of Tianjin University and Advisory board member of Materials Horizons. His present scientific interests are focused on the design and the applications of bio-inspired asymmetrical interfaces for fluid manipulation, including (1) Self-propelled fluid delivery on open interfaces; (2) Bubble manipulation on hydrophobic slippery surfaces; (3) Integrated systems with fluid collecting ability.

 

Where do you see the materials chemistry field in the next 10 years?

‘As for the research field in next 10 years, human beings should overcome the shortage of resources including water, energy, food, etc. For example, the drinking water scarcity has influenced the millions of people in undeveloped country. In such region, the complicated equipment such as membrane systems might not be suitable due to the high cost. Therefore, the future research should focus on the drinking water production with more convenient and efficient way. Learning from nature can give us numerous ideas. Why can plants efficiently uptake clear water from mud? How did plant capture and reserve water in arid region? How can we take those inspirations to our design? If we can totally understand the biologic logic of water uptake, I believe that we can further improve the current systems for water production. What I can see is that the combination between the hierarchical structure of plants and the solar absorbing system should be a possible answer to biologic water uptake. So, in the next 10 years, the solar-assisted water production and liquid manipulation can be an important interdisciplinary topic that relating to water, energy, agriculture and integrated functional devices.’

Could you provide a summary of your most recent Materials Horizons publication?

‘In our recent publication in Materials Horizons (2022, 9, 1888), we have fully revealed the superior floatability of Pistia stratiotes that is a kind of aquatic plants. Compared with the traditional lotus leaf, Pistia stratiotes has improved floatability on the basis of its penetrable superhydrophobic/hydrophilic Janus structure. Even when pushed into water, Pistia can spontaneously return to its original orientation on the water surface, and the on-surface leftover water can be actively drained through its liquid channel. Inspired by this natural design, we have fabricated an interfacial tumbler with similar structure, showing an improved floatability. In addition, we have also demonstrated a micro-light-buoy based on this bioinspired floater, which can meet the requirement of floatable microdevice and on-sea signaling. In this publication, we have updated the understand of the floatability of Pistia, and then design a bioinspired structure to optimize the micro-floater. In future, the on-water or on-sea micro-devices should be a promising platform for detection, desalination, imaging, etc. Therefore, our design can also provide a method to stabilize the functional devices at air/water interface. We are interested in discovering the nature’s secrets and learning from nature’s way. ‘

 

Check out Muyuan’s latest Materials Horizons articles here:

Designing a slippery/superaerophobic hierarchical open channel for reliable and versatile underwater gas delivery.

Xinsheng Wang, Haoyu Bai, Zhe Li,  Yaru Tian,  Tianhong Zhaoa and Moyuan Cao.

Mater. Horiz., 2023,10, 3351-3359. DOI: 10.1039/D3MH00898C

 

An interfacial floating tumbler with a penetrable structure and Janus wettability inspired by Pistia stratiotes.

Yifan Yang, Haoyu Bai, Muqian Li, Zhe Li, Xinsheng Wang, Pengwei Wang and Moyuan Cao.

Mater. Horiz., 2022,9, 1888-1895. DOI: 10.1039/D2MH00361A

 

Vivian Wing Wah Yam, Advisory Board Member

The University of Hong Kong, China

Photograph of Vivian Wing Wah Yam

 

Vivian W.-W. Yam obtained both her BSc (Hons) and PhD from The University of Hong Kong, and is currently the Philip Wong Wilson Wong Professor in Chemistry and Energy and Chair Professor of Chemistry at The University of Hong Kong. She was elected to Member of Chinese Academy of Sciences, International Member (Foreign Associate) of US National Academy of Sciences, Foreign Member of Academia Europaea, Fellow of TWAS and Founding Member of Hong Kong Academy of Sciences. She was Laureate of the 2011 L’Oréal-UNESCO For Women in Science Award. She has received a number of awards, including the Josef Michl ACS Award in Photochemistry, RSC Centenary Medal, RSC Ludwig Mond Award, Porter Medal, Bailar Medal, I-APS Presidential Award, FACS Foundation Lectureship Award, APA Masuhara Lectureship Award, JPA Honda-Fujishima Lectureship Award, JPA Eikohsha Award, JSCC International Award, State Natural Science Award, CCS-China Petroleum & Chemical Corporation (Sinopec) Chemistry Contribution Prize, CCS Huang Yao-Zeng Organometallic Chemistry Award, etc. Her research interests include inorganic/organometallic chemistry, supramolecular chemistry and controlled assembly of nanostructures, photophysics and photochemistry, and metal-based molecular and nano-assembled functional materials for sensing, organic optoelectronics and energy research.

What do you like most about being on the Advisory Board for Materials Horizons?

‘Being on the Advisory Board for Materials Horizons, I am pleased that we are involved in a lot of decision-making. It is running on a highly transparent and open system.  We are given opportunities to vote on different things, such as the outstanding papers awards, the top covers, and to provide nominations and suggestions, or to be involved in Horizons Symposia etc. We are also provided with the most up-to-date information on the developments of Materials Horizons.’

Could you provide a summary of your most recent Materials Horizons publication?

‘The team of the Department of Chemistry in The University of Hong Kong showcased for the first time a new class of robust gold(III) complexes with promising operational half-lifetime of more than 200,000 hours. The findings have been published in the special issue of Materials Horizons in honour of Professor Seth Marder (Mater. Horiz., 2022, 9, 281–293). Our most recent Materials Horizons publication (Mater. Horiz., 2022, 9, 281) reported the design and synthesis of yellow- to red-emitting gold(III) complexes and their applications in operationally stable organic light-emitting devices (OLEDs).

We showed that gold(III) complexes can display unprecedented room-temperature phosphorescence both in solution and in the solid state in 1993, and have since designed luminescent gold(III) systems and reported for the first time the use of phosphorescent gold(III) emitters in OLEDs in 2005. Through systematic spectroscopic and photophysical studies, together with rational molecular design and optimization of the molecular structure, their performances have since been increasingly improved towards practical device performance. Through the delicate balance of the radical anion stability and the resonance structures of the N-heterocyclic moieties introduced onto the cyclometalating ligand, a proper choice of the isomers is found to be the determining factor for the realization of high operational stability in these gold(III) complexes. The isomeric effect and extended π-conjugation of the N-heterocycles are shown to remarkably perturb the photophysical, electrochemical and electroluminescence properties of these gold(III) complexes. This has led to high device operational stabilities with long half-lifetime reaching 206,800 hours and maximum external quantum efficiencies of 14.5% in the vacuum-deposited devices, representing the longest operational half-lifetime as well as the highest EQE among the orange-emitting gold(III)-based devices reported so far at that time. This work has provided mechanistic insights and would have significant and important impact on the research and development of luminescent gold(III) complexes.’

 

Read Vivian W.W’ s latest articles across the Materials journals here:

Design and synthesis of yellow- to red-emitting gold(iii) complexes containing isomeric thienopyridine and thienoquinoline moieties and their applications in operationally stable organic light-emitting devices.

Lok-Kwan Li, Cathay Chai Au-Yeung, Man-Chung Tang, Shiu-Lun Lai, Wai-Lung Cheung, Maggie Ng, Mei-Yee Chan and Vivian Wing-Wah Yam.

Mater. Horiz., 2022,9, 281-293. DOI:10.1039/d1mh00821h

 

Synthesis and photoswitchable amphiphilicity and self-assembly properties of photochromic spiropyran derivatives.

Yiwei Zhang, Maggie Ng, Eugene Yau-Hin Hong, Alan Kwun-Wa Chan, Nathan Man-Wai Wu, Michael Ho-Yeung Chan, Lixin Wu and Vivian Wing-Wah Yam.
J. Mater. Chem. C
, 2020,8, 13676-13685. DOI: 10.1039/d0tc03301d

 

Darren Lipomi, Advisory Board Member

UC San Diego, USA

Photograph of Darren Lipomi

 

Darren J. Lipomi is a Professor of nanoengineering, chemical engineering, and materials Science at UC San Diego. He is also the Associate Dean for Students and the Faculty Director of the IDEA Engineering Student Center at the Jacobs School of Engineering at UCSD. Lipomi earned his bachelor’s degree in chemistry with a minor in physics as a Beckman Scholar at Boston University in 2005, and his PhD in chemistry at Harvard University in 2010, with Prof. George M. Whitesides. From 2010 – 2012, he was an Intelligence Community Postdoctoral Fellow in the laboratory of Prof. Zhenan Bao at Stanford University, and arrived at UCSD in 2012. His research interests include the chemistry of organic materials, especially the mechanical properties of semiconducting polymers for flexible solar cells, biomechanical sensors, and phenomena that occur at the intersection of materials chemistry with human perception and cognition. He is the recipient of the AFOSR Young Investigator award, the NIH Director’s New Innovator Award, the Presidential Early Career Award for Scientists and Engineers (PECASE), and the NSF BRITE-Pivot award. He hosts a podcast, “Molecular Podcasting with Darren Lipomi” and associated YouTube channel (Darren_Lipomi) that together have >15,000 subscribers. These venues serve as a resource to students, postdocs, and other early-career researchers.

What do you like most about being on the Advisory Board for Materials Horizons?

‘Serving on the Advisory Board for Materials Horizons has been a true privilege. The multifaceted nature of this role, which allows me to engage with authors, editors, and editorial staff, is what I find most gratifying. I have been pleased to have the opportunity to shape the direction of the journal and influence the discourse within the scientific community. I have especially enjoyed interacting with my fellow board members, who come from a broad swath of the materials science community.’

Where do you see the materials chemistry field in the next 10 years?

‘The next decade holds great promise for materials science, in particular increased interdisciplinary in an already interdisciplinary field. We’ll likely witness the emergence of smarter materials for human interaction. That is, true bioinspiration; materials with combined sensor-actuator functionality and neuromorphic designs. I am especially interested in the intersection of materials science with human perception and psychology. The advent of more sustainable materials and improved methods for recycling will play a significant role in tackling environmental challenges. Furthermore, with advancements in computation and machine learning, materials design will become more predictive, accelerating the discovery of new materials with tailored properties.

 

You can find Darren’s latest Materials Horizons and Nanoscale articles below:

Human ability to discriminate surface chemistry by touch.

Cody W. Carpenter, Charles Dhong, Nicholas B. Root, Daniel Rodriquez, Emily E. Abdo, Kyle Skelil, Mohammad A. Alkhadra, Julian Ramírez, Vilayanur S. Ramachandran and Darren J. Lipomi.
Mater. Horiz.
, 2018,5, 70-77. DOI: 10.1039/c7mh00800g

 

Exploring the limits of sensitivity for strain gauges of graphene and hexagonal boron nitride decorated with metallic nanoislands.

Julian Ramírez, Armando D. Urbina, Andrew T. Kleinschmidt, Mickey Finn, III, Samuel J. Edmunds, Guillermo L. Esparzaa and Darren J. Lipomi.

Nanoscale, 2020,12, 11209-11221. DOI: 10.1039/d0nr02270e

 

Luisa Torsi, Advisory Board Member

University of Bari, Italy

Photograph of Luisa Torsi

Luisa Torsi is a professor of analytical chemistry at the University of Bari and president of the Regional Center on Single-Molecule Digital Assay. She received her laurea degree in Physics and the PhD in Chemistry from UNIBA and was post-doctoral fellow at Bell Labs in USA.
In 2010 Torsi was awarded the Merck prize and in 2019, she received the Distinguished Women Award from the International Union of Pure and Applied Chemistry (IUPAC). She was also president of the European Material Research Society. Torsi is the winner of the Wilhelm Exner Medal 2021, a prize awarded since 1921 by the Austrian Industrial Association and the Premio del Presidente della Repubblica dell’Accademia dei Lincei. She is also a member of this prestigious Accademia since 2023
Torsi has authored ca. 240 papers, published also in Science and Nature journals. Her works collected mare then 16.400 Google Scholar citations resulting in an h-index of 63. Gathered research funding for over 40 M€, comprises several national and European projects, mostly coordinated by her. Torsi is committed to the role-modeling for younger women scientists. In a recent campaign by Fondazione Bracco, she was featured in a story of TOPOLINO (Italian series of Disney comics), as “Louise Torduck”, a successful female scientist of the Calisota valley.

Where do you see the materials chemistry field in the next 10 years? 

‘I believe that a forthcoming challenge in the field will revolve around delving into the molecular-level investigation and comprehension of the electrostatic characteristics of proteins, especially when they are constrained to a surface or when they come together to create a biolayer.’

Could you provide a summary of your most recent Materials Horizons publication?

‘It a reflection on the comparison between electronic and electrochemical biosensors. It starts from the observation that several three-terminal organic bioelectronic structures have been proposed for diverse biosensing applications, with a focus on organic field-effect transistors in an electrolyte as popular choices for detecting proteins and genomic analytes. These devices gain selectivity by immobilizing bio-recognition elements and are cost-effective for point-of-care medical uses. However, they don’t consistently outperform traditional electrochemical sensors. The idea is to provide the community with a comparative analysis of potentiometric and amperometric electrochemical sensors against organic bioelectronic transistors, including an examination of their sensing mechanisms and amplification factors. It also discusses the functional relationship between sensor responses and analyte concentration for accurate quantification.’

 

Here are some of Luisa’s latest articles from across the Materials journals:

About the amplification factors in organic bioelectronic sensors.

Eleonora Macchia, Rosaria Anna Picca, Kyriaki Manoli, Cinzia Di Franco, Davide Blasi, Lucia Sarcina, Nicoletta Ditaranto, Nicola Cioffi, Ronald Österbacka, Gaetano Scamarcio, Fabrizio Torricelli and Luisa Torsi.

Mater. Horiz., 2020,7, 999-1013. DOI: 10.1039/c9mh01544b

 

A stable physisorbed layer of packed capture antibodies for high-performance sensing applications.

Lucia Sarcina, Cecilia Scandurra, Cinzia Di Franco, Mariapia Caputo, Michele Catacchio, Paolo Bollella, Gaetano Scamarcio, Eleonora Macchia and Luisa Torsi.
J. Mater. Chem. C
, 2023,11, 9093-9106. DOI: 10.1039/d3tc01123b

 

We hope you have enjoyed meeting our Advisory board members.  Next month we take a look at some more of our featured Materials Horizons Emerging Investigators.

 

Or to read more of our community spotlight blog, return to the home page here

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Horizons Symposium 2023: Round-up

Did you attend the 2023 Horizons Symposium on electronic and energy materials in Berlin? Don’t worry if you missed out, catch up on all the excitement below!

In late September this year, the first annual Horizons Symposium finally took place at the Humboldt University of Berlin. Featuring exciting talks from our invited speakers and an engaging poster session, the breadth and quality of science presented was truly outstanding!

Hosted by Materials Horizons and Nanoscale Horizons, the two-day symposium was rounded off with a ‘meet the editor’ session led by Editorial Board Chair of Materials Horizons, Martina Stenzel. Overall, the symposium offered a unique opportunity for plenty of networking and discussing the future of materials for electronic and energy applications! We very much look forward to the 2024 event!

 

Meet our poster prize winners!

Materials Horizons and Nanoscale Horizons were delighted to award two poster prizes – congratulations to Vaidehi Lapalikar and Thorsten Schultz!!
Thorsten receives his poster prize certificate from Executive Editor Michaela Dr. Thorsten Schultz
Scientist, Helmholtz-Zentrum Berlin für Materialien und Energie.

Poster prize awarded for poster entitled: “Work function and energy level alignment tuning at Ti₃C₂Tx MXene surfaces and interfaces using (metal-)organic donor/acceptor molecules”Thorsten Schultz graduated from the University of Leipzig (Germany) in 2014 and obtained his PhD degree in physics in 2018 from the Humboldt Universität zu Berlin (Germany), working in the group of professor Norbert Koch on energy level alignment mechanisms at inorganic-organic semiconductor interfaces investigated with photoelectron spectroscopy. In 2019, he joined the Helmholtz-Zentrum Berlin für Materialien und Energie as a Postdoc, deepening his experience in the field of photoelectron spectroscopy. He continued working on the energy level alignment manipulation at organic/inorganic semiconductor interfaces, culminating in a universal method to adjust the energy level alignment at such interfaces over a wide range by the insertion of thin molecular donor/acceptor interlayers, the so-called interlayer method.  He is now permanently employed as a beamline scientist at Helmholtz-Zentrum Berlin and will be responsible for the ENERGIZE beamline after its completion, which will be dedicated to research on hybrid materials and energy efficient technologies.

Vaidehi Lapalikar
Doctoral researcher, Technische Universität Dresden.

Poster prize awarded for poster entitled: “Solution-processed electronics based on BiOI”“The RSC Horizons Symposium on electronic and energy materials gave me a particularly exciting opportunity to interact with a diverse spectrum of professionals associated with this field, ranging from doctoral students to established researchers, publishing editors, and experts doing pioneering work towards open science. The event left me thoroughly inspired and full of fresh ideas for the future!”

LinkedIn profile.

Vaidehi Lapalikar receives her poster prize

Congrats to our best student question winners!

The Royal Society of Chemistry was also delighted to award two special prizes for the best question asked by a student – we were overwhelmed by the many insightful questions from all attendees but were delighted to award Emily Albert and Anton Dzhong with a pair of colour changing RSC mugs for their excellent and engaging questions!

 

Emily Albert poses with her colour changing mug mid-transition Emily Albert
Master student, Humboldt Universität zu Berlin. 

Emily Albert is a Masters student in the group Supramolecular Systems led by Prof. Dr. Norbert Koch at Humboldt Universität zu Berlin.

“The Horizon Symposium provided  a familiar and open-minded environment, perfect for asking questions as a student!”

Anton Dzhong
Master student, Humboldt Universität zu Berlin. 

Anton Dzhong is currently working on his Masters Thesis in Eva Unger’s Research Group at Helmholtz-Zentrum Berlin on Perovskite Solar Cell Materials.

“The Symposium posed a great opportunity to explore the field of energy materials and it was fun having fruitful discussions with so many dedicated researchers!”

LinkedIn Profile

Anton poses with his poster

 

Thanks to all attendees, speakers and the organising committee for a truly engaging and enjoyable symposium – we look forward to meeting more of our community next year! Sign up to our journal email alerts to make sure you are the first to hear when registration opens!
_______________________

 

Photo gallery

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)