Archive for April, 2024

Bioelectronic Wound Dressings for Realtime Monitoring of Patient Health

Patients with diabetes frequently develop chronic ulcers on their lower extremities that are extremely challenging to treat. To accelerate healing, numerous wound dressings have been developed to protect damaged tissue and possibly deliver therapeutics. However, few dressings can provide real-time monitoring of wound healing and patient health. Since diabetic ulcers are prone to persistent hyperglycemia, ischemia, prolonged inflammation, and bacterial infections, frequently assessing biomarkers is essential to optimize treatment and maximize healing outcomes.

In a recent work by Hou et. al., a multifunctional wound dressing is developed to not only shield diabetic foot wounds from insult and bacterial infections, but record wound site temperature, pH, and glucose levels. Additionally, the flexible electronic also monitors physiological signals such as patient heart rhythm and brain activity. To create the diagnostic dressing, a poly(ethylene glycol)-based polymer possessing cationic and anionic moieties, as well as the self-complementary hydrogen-bonding group, ureidopyrimidinone (UPy) is developed. The polymer abbreviated PADU after the first letter of each constituting monomer, forms flexible substrates due to intermolecular UPy interactions as well as ionic bonding between cationic and ionic segments.

 

Figure 1: Schematics of using the diagnostic wound dressings, the internal molecular structure and corresponding performance of flexible polymeric substrates. Reproduced from DOI: 10.1039/D3MH02064A with permission from the Royal Society of Chemistry.

 

When applied to metals, rubber, plastic, glass, and biological tissues, PADU substrates display remarkable adhesion, notably exceeding an adhesive strength of 13 kPa for both diabetic and healthy mouse skin. Following damage to the patch, dynamic hydrogen bonding also endows PADU materials with self-healing capabilities, restoring 96% of their original mechanical strength after 24 hours. In practical use this gives PADU substrates a huge advantage because may be able to sustain electronic function despite physical damage from bodily movement.

In addition to its superb mechanical properties, PADU was also found to exhibit antibacterial activity. Killing of bacteria is achieved through disruption of the cell membrane by cationic groups within the polymer, making it active against even drug-resistant pathogens. Co-cultures with mammalian cells and blood cells, however, showed no cytotoxic or hemolytic effects, and biocompatibility was further confirmed by subcutaneous implantation into mice.

When glucose, pH, and temperature sensors were printed on PADU substrates, real-time monitoring of environmental conditions were reported with high accuracy. Gold foil electrodes could also be easily integrated into the patch to produce dressings capable of collecting electrocardiograms, electromyographic signals, and electroencephalograms. Due to their strong adhesion to skin, PADU-based sensors could even collect electrophysiological readings while patients were in motion, exceeding the accuracy of commercial sensors.

The dressing developed in the work by Hou, et. al. surpasses the capabilities of most diabetic wound dressings due its multifunctional performance as an adhesive and versatile electronic. Although initially designed for diabetic ulcers, the technology will likely find broad use as a diagnostic dressing for any type of slow-healing wound. In future studies, electronic patches may even be studied as implantable materials to monitor surgical site healing or internal injuries. Overall, the work demonstrates the vast utility of flexible bioelectronics and highlights the importance of developing new devices that not only treat but monitor chronic wounds.

To find out more, please read:

Skin-adhesive and self-healing diagnostic wound dressings for diabetic wound healing recording and electrophysiological signal monitoring
Zishuo Hou, Tengjiao Wang, Lei Wang, Junjie Wang, Yong Zhang, Qian Zhou,   Zhengheng Zhang, Peng Li and Wei Huang
Mater. Horiz., 2024, Advance Article, DOI: 10.1039/D3MH02064A


About the blogger


 

Kelsey DeFrates is a Materials Horizons Community Board member. She received her Bachelor of Science in Bioengineering at Rowan University (Glassboro, New Jersey) in 2018 and completed her Ph.D. in Bioengineering through the University of California, Berkeley – UCSF joint graduate program in 2023. For her thesis research, Kelsey worked with Professor Phillip Messersmith at UC Berkeley on the development of supramolecular materials for drug delivery and tissue regeneration. In 2023, Kelsey joined Professor Christopher Hernandez at UCSF as a Chancellor’s Postdoctoral Fellow, where she is working to understand how bacteria sense and respond to physical stimuli. In future work, Kelsey hopes to use this information to develop engineered living materials for healthcare and sustainable building.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Dual substitution strategy to promote ionic conductivity of solid-state electrolyte

Electrification of transportation has become one of the most important central themes of modern society to build a sustainable system. The market for electric vehicles (EVs), which are powered by Li-ion batteries (LIBs), has been growing very rapidly and continuously. While EVs have become more popular on the road, there are concerns about their safety and somewhat limited driving ranges. In this respect, solid-state Li metal batteries have been extensively explored because of the following merits. First, solid-state electrolytes are more resistant to catching fire than liquid organic electrolytes that are flammable. Second, solid-state electrolytes are expected to be more stable against lithium metal dendrite penetration, which allows the use of energy-dense lithium metal anodes instead of graphitic carbon. However, it is still challenging to achieve “practical” high-energy density of solid-state Li metal batteries, which requires thick composite cathodes enabled by super-ionic conductors (>10 mS/cm). Although we have observed significant progress in improving the ionic conductivities of solid-state electrolytes, more fundamental studies to understand important parameters promoting lithium-ion conductivity and further exploration in new chemical spaces are needed.

A recent study by Han and colleagues developed a new borohydride/halide dual-substituted argyrodite-type solid-state electrolyte, which achieves an ionic conductivity of > 26 mS/cm after low-temperature sintering. They synthesized the borohydride/halide dual-substituted argyrodite solid-state electrolytes using a two-step ball-milling method from β-Li3PS4, LiBH4, and LiCl. While they also tried to incorporate Br and I instead of Cl in the argyrodite solid-state electrolytes, they always produced unknown impurity phases and exhibited lower ionic conductivity. When they varied the compositions (2.5 ≥ x ≥ 1.5, Li3PS4 + xLiBH4 + 0.5LiCl), it was found that the composition of Li3PS4 + 2LiBH4 + 0.5LiCl (x = 2) exhibits the highest ionic conductivity of 16.4 mS/cm without sintering and 26.1 mS/cm after the sintering. They claimed that the increase of occupancy of BH4in 4a may harm the ionic conductivity when x is larger than 2, but it still remains an open question why x = 2 composition has a sweet spot for the highest ionic conductivity in their system.

Figure 1: (a) Nyquist plots of Li3PS4 + xLiBH4 + 0.5LiCl (2.5 ≥ x ≥ 1.5) and commercial Li6PS5Cl. (b) EIS spectra of Li5.35PS4.35(BH4)1.15Cl0.5 at various temperatures. (c) Arrhenius plots and the activation energy of Li3PS4 + xLiBH4 + 0.5LiCl (2.5 ≥ x ≥ 1.5) and commercial Li6PS5Cl. (d) BH4- occupancy of 4a and 4d sites for each electrolyte and its ionic conductivity. The dashed lines are the trend lines of each site. Reproduced from DOI: 10.1039/D3MH01450A with permission from the Royal Society of Chemistry.

They further investigated the electrochemical properties, including oxidation stability limit, Li metal deposition/stripping cycles, and full cell tests. While they confirmed that their borohydride/halide dual-substituted argyrodite-type solid-state electrolytes are stable up to 5.0 V (vs. Li/Li+) using cyclic voltammetry (CV) technique, they used a simple cell configuration of Li-metal/solid-state electrolyte/current collector, which often overestimates oxidation limits. In the Li/solid-state electrolyte/Li symmetric cycling tests, they achieved stable cycling for up to 2000 hours (at 1mA/cm2, for 1 hour charge – 1 hour discharge cycles) and high critical current density (CCD) of 2.5 mA/cm2. They also confirmed the practical feasibility of their solid-state electrolytes in full-cell tests where Li metal and LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 are used as an anode and a cathode, respectively.

In conclusion, Han et al. demonstrated that the dual substitution of borohydride and halide enhances lithium-ionic conductivity of argyrodite-type solid-state electrolytes significantly. Their work sheds light on a new strategy of dual substitution to achieve super-ionic conductivity although there are remaining important questions to understand (i) why only Cl could be soluble in the argyrodite structure along with borohydride and (ii) why a specific composition shows the best ionic conductivity. Answering the questions above will give us better insights to design even better super-ionic conductors in the future.

To find out more, please read:

Borohydride and halide dual-substituted lithium argyrodites
Ji-Hoon Han, Do Kyung Kim, Young Joo Lee, Young-Su Lee, Kyung-Woo Yi and  Young Whan Cho.
Mater. Horiz., 2024, 11, 251-261, DOI: 10.1039/D3MH01450A


About the blogger


Haegyeom Kim is a Staff Scientist at Materials Sciences Division of Lawrence Berkeley National Laboratory (LBNL) and a Community Board member of Materials Horizons. In 2016-2019, he worked as a postdoctoral researcher at the LBNL (Supervisor: Prof. Gerbrand Ceder). He also spent 1 year as a postdoctoral researcher at Research Institute of Advanced Materials in Seoul National University (SNU) (Supervisor: Prof. Kisuk Kang) in 2015-2016. Dr. Kim completed his PhD degree in Materials Science and Engineering from SNU in 2015 (Advisor: Prof. Kisuk Kang), Master’s Degree in EEWS (Energy, Environment, Water and Sustainability) from Korea Advanced Institute of Science and Technology (KAIST) in 2011, and Bachelor’s Degree in Materials Science and Engineering from Hanyang University in 2009. At LBNL, Dr. Kim runs Renewable Energy Storage Lab, which designs and develops efficient and cost-effective energy storage and conversion materials based on the fundamental understanding of synthesis-structure-performance relationships. More information about Dr. Kim and his research group can be found here: https://kimhaegyeom1.wixsite.com/kim1

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Materials Horizons welcomes Yun Jung Lee as a Scientific Editor

Materials Horizons Editorial Board Update

Welcoming Yun Jung Lee as a Scientific Editor

 

Yun Jung Lee is a professor of department of energy engineering at Hanyang University (HYU), South Korea. She received her B.Sc and M. Sc at Seoul University, South Korea, in 1998 and 2000 respectively and completed her Ph.D. at the Massachusetts Institute of Technology, USA in 2009. After postdoctoral research at Pacific Northwest National Laboratory, USA, she joined HYU in 2011. Her research interests include designing advanced nanomaterials and architecture for next generation energy conversion/storage devices. Based on the fundamental study on electrochemical and electro-chemo-mechanical phenomena in diverse energy storage systems, her group currently focuses on novel electrode and architecture employing the nanoscale synthesis strategies. She was a recipient of the Woman Scientist/Engineer of the year award, academic division from Korean Ministry of Science & ICT (2017), and Korea Toray Fellowship from Korea Toray Science Foundation (2018).

Please join us in welcoming Yun Jung Lee to the Materials Horizons Editorial Board! Browse our current Editorial Board here.

Submit your latest and best work to Yun Jung Lee and our team of expert Scientific Editors now. Check out the Materials Horizons author guidelines for more information on our scope, requirements and article types. We look forward to receiving your work!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

High-Performance Neuromorphic Computing Based on One-Dimensional Halide Perovskites

Neuromorphic computing, inspired by the structure of the human brain, aims to overcome the limitations of traditional computing architectures by more closely integrating processing and memory functions. It is believed that this approach is a step towards dramatically improving the efficiency of artificial neural networks by in-memory computing. Specifically, compared to conventional graphics processing units, the memristor crossbars connected by synapses would markedly enhance the training and inference of the artificial neural networks in terms of speed and power for natural language processing, image classification, and so forth.

Due to their tantalizing properties, including unique control of ionic processes, mechanical flexibility, and low cost processability, organic materials, such as small molecules, polymers, graphene oxides, and halide perovskites, have sparked considerable research interests for crossbar memristive materials for artificial neural networks. Nevertheless, some weaknesses, such as dissatisfactory environmental stability, irreproducible switching behavior, and lack of understanding of the switching mechanisms, inevitably limit their applications for such application. Thus, it is of vital importance to rationally design new organic materials for crossbar memristors and synapses, to thoroughly understand their mechanisms, and to characterize their performance.

Recently, Vishwanath et al. designed, fabricated, and evaluated one-dimensional halide perovskites for crossbar memristive materials for application in artificial neural networks. They synthesized two kinds of one-dimensional halide perovskites, one with the organic cation of propylpyridinium and the other with the organic cation of benzylpyridinium. The substituted pyridines were used as templating agents to construct the one-dimensional structures. Compared to the three-dimensional perovskites, these exhibit better resistive switching performance due to their larger band gaps.

Figure 1: Comparative evaluation of 1D halide perovskites (PrPyr)[PbI3] and (BnzPyr)[PbI3]. Single crystal X-ray structures of 1D lead-iodide hybrids (A) (PrPyr)[PbI3] and (B) (BnzPyr)[PbI3]. Grey, blue, and purple spheroids represent C, N, and I atoms, respectively, while the cyan octahedron represents the [PbI6]−4 coordination sphere. Insets show the molecular structures of PrPyr+ and BnzPyr+ cations. H atoms are omitted for clarity. Thermal ellipsoids are shown at 50% probability. (C) Glancing angle X-ray diffraction (GAXRD) patterns, (D) UV-vis absorption spectra, and (E) I–V characteristics demonstrating the resistive switching effect in three different perovskites, MAPbI3, (PrPyr)[PbI3] and (BnzPyr)[PbI3]. (F) Crystal structure of (BnzPyr)[PbI3] where the edgeto-face type π-stacking interactions of aromatic cores are highlighted with dashed lines within the organic galleries. The square insets show a view down the axis from the perspective of eclipsed aromatic cores (viewing direction is denoted by the black arrows, while the red arrows point to the C atoms containing C–H ‘‘H-bond donor’’ functionalities). Reproduced from DOI: 10.1039/d3mh02055j with permission from the Royal Society of Chemistry.

In order to maximize the improvement of their reliability, endurance, and retention, a device configuration of Ag/PMMA/HP/PEDOT:PSS/ITO was adopted, in which the halide perovskites switching matrix is sandwiched between the poly(methyl methacrylate) (PMMA) isolated layers and the poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). By employing the widely-used solution-processable technique, the team elaborately fabricated the largest dot point and crossbar halide perovskites memristive arrays so far (50000 devices across an area of 100 cm2 and 16×16 crossbar).

Furthermore, they comprehensively analyzed the analog programming window for the halide perovskites. Concurrently, a spiking neural network with halide perovskite synapses was trained to classify the handwritten digits from the Modified National Institute of Standards and Technology database, which corroborates the applicability of the spike-timing-dependent plasticity learning of one-dimensional halide perovskite memristive synapses.

In summary, this novel study pioneers a new path for high-performance neuromorphic computing with innovative halide perovskites as the active material. These insightful results not only offer a solid foundation for the future explorations of halide perovskites in state-of-the-art neuromorphic computing, but also highlight the significance of materials innovation in unlocking the potential of next-generation computing technologies.

To find out more, please read:

High-performance one-dimensional halide perovskite crossbar memristors and synapses for neuromorphic computing
Sujaya Kumar Vishwanath, Benny Febriansyah, Si En Ng, Tisita Das, Jyotibdha Acharya, Rohit Abraham John, Divyam Sharma, Putu Andhita Dananjaya, Metikoti Jagadeeswararao, Naveen Tiwari, Mohit Ramesh Chandra Kulkarni, Wen Siang Lew, Sudip Chakraborty, Arindam Basuf and Nripan Mathews
Mater. Horiz., 2024, Advance Article, DOI: 10.1039/d3mh02055j


About the blogger


 

Wen Shi is currently an Associate Professor at School of Chemistry, Sun Yat-sen University and a Materials Horizons Community Board member. He received his Ph.D. in physical chemistry from Tsinghua University in 2017. From 2017 to 2021, he worked as a scientist at Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR) in Singapore. Dr. Shi’s current research interests are in theoretical computations and simulations of functional materials.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)