Archive for October, 2013

Materials Horizons author profile: Professor Gordon Wallace

You may have seen Gordon Wallace’s recent Materials Horizons communication on liquid crystalline dispersions of graphene oxide. (If not, take a look here; it’s free to access!) Here, we profile the author, and ask him about his experience with Materials Horizons.

Professor Gordon Wallace is currently the Executive Research Director at the ARC Centre of Excellence for Electromaterials Science and Director of the Intelligent Polymer Research Institute. He previously held an ARC Federation Fellowship and currently holds an ARC Laureate Fellowship. Professor Wallace’s research interests include organic conductors, nanomaterials and electrochemical probe methods of analysis, and the use of these in the development of Intelligent Polymer Systems. A current focus involves the use of these tools and materials in developing bio-communications from the molecular to skeletal domains in order to improve human performance via medical Bionics.

With more than 700 refereed publications, Professor Wallace has attracted some 17,000 citations and has a h-index of 61. He has supervised 77 PhD students to completion at the Intelligent Polymer Research Institute and currently co-supervisors 30 PhD students.

Professor Wallace is an elected Fellow at the Australian Academy of Science, the Australian Academy of Technological Sciences and Engineering, the Institute of Physics (UK) and the Royal Australian Chemical Institute. In addition to being named NSW Scientist of the Year in the chemistry category in 2008, Professor Wallace was also appointed to the Korean World Class University System, and received the Royal Australian Chemical Institute HG Smith Prize.

Why did you choose Materials Horizons to publish your exciting work?
I like the approach that combines education and digestible insights with the forefront of research. More and more I realise the critical need to communicate advances in knowledge emanating from the research laboratory to a broad cross section of our communities as effectively and efficiently as possible.

How did you find the Materials Horizons publication process?
The process was effective and efficient.

What topics would you like to see covered in future issues of Materials Horizons?
I think some coverage of advances in BioAFM would be most timely.

 

Formation and processability of liquid crystalline dispersions of graphene oxide
Rouhollah Jalili, Seyed Hamed Aboutalebi, Dorna Esrafilzadeh, Konstantin Konstantinov, Joselito M. Razal, Simon E. Moulton and Gordon G. Wallace
Mater. Horiz., 2014, Advance Article DOI: 10.1039/C3MH00050H

Manipulation of graphene oxide sheets to form liquid crystalline dispersions enabling fabrication of multifunctional 3D-structures.

 

 

Follow the latest journal news on Twitter @MaterHoriz or go to our Facebook page.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Materials Horizons – new advanced articles have been published!

Self-Assembly of Aligned Rutile@Anatase TiO2 Nanorod@CdS Quantum Dots Ternary Core-Shell Heterostructure: Cascade Electron-Transfer by Interfacial Design
Fang-Xing Xiao, Jianwei Miao and Bin Liu

A novel self-assembly approach based on electrostatic interaction has been developed for the synthesis of rutile@anatase TiO2 nanorod (NR)@CdS quantum dots (QDs) ternary core-shell heterostructure, for which in-situ formed monodispersed anatase TiO2 layer was intimately sandwiched between rutile TiO2 NRs and CdS QDs. It has been demonstrated that the well-defined bilayer interface significantly improves the photocatalytic performance of the ternary heterostructure (i.e. rutile@anatase TiO2 NR@CdS QDs), owing predominantly to the appropriate band alignment of constituting semiconductors, thus facilitating photogenerated electron-hole separation and charge collection under simulated solar light irradiation.

 
Mater. Horiz., 2013, DOI: 10.1039/c3mh00097d, Accepted Manuscript


Supramolecular host–guest polymeric materials for biomedical applications
Xian Jun Loh

The bottom–up synthesis of highly complex functional materials from simple modular blocks is an intriguing area of research. Driven by the chemistry of supramolecular assembly, modules which self-assemble into intricate structures have been described. These hierarchically assembled systems extend beyond the individual molecule and rely on non-covalent interactions in a directed self-assembly process. The intrinsic properties of the materials can be modified by exploiting the dynamic and specific uni-directional interactions among the building. This also allows the building of novel supramolecular structures such as hydrogels, micelles and vesicles. These aqueous supramolecular networks belong to a novel category of soft biomaterials exhibiting attractive properties such as stimuli-responsiveness and self-healing properties derived from their dynamic behavior. These are important for a wide variety of emerging applications. In this review, the latest literature describing the formation of dynamic polymeric networks through host–guest complex formation will be summarised. These approaches carried out in the aqueous medium have unlocked a versatile toolbox for the design and fine-tuning of supramolecular self-assembled materials.

Mater. Horiz., 2014, DOI: 10.1039/c3mh00057e, Advanced Article

Protein coronas suppress the hemolytic activity of hydrophilic and hydrophobic nanoparticles
Krishendu Saha, Daniel Moyano and Vincent M Rotello

The role of nanoparticle surface hydrophobicity on its hemolytic property is established in the absence and the presence of plasma proteins. Significantly, the formation of plasma protein corona on NP surface protects red blood cells from both hydrophilic and hydrophobic NP-mediated hemolysis.

Mater. Horiz., 2013, DOI: 10.1039/c3mh00075c, Accepted Manuscript

 

Dendrimer-linked, renewable and magnetic carbon nanotube aerogels
Xuetong Zhang, Liang Chen, Tianyu Yuan, Huan Huang, Zhuyin Sui, Ran Du, Xin Li, Yun Lua and Qingwen Lib

Magnetic carbon nanotube aerogels with a repeated aerogel–sol–hydrogel–aerogel transition have been acquired by the special drying of gel-precursors made via assembling individual nanotubes with dendritic poly(amido amine) molecules in the presence of Fe3O4 nanoparticles, which has inspired us to synthesize renewable 3D porosints composed of organic, inorganic and their hybrid building blocks.

Mater. Horiz., 2014, DOI: 10.1039/c3mh00076a, Advanced Article

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)