Emerging Investigator Series – Mathieu Odijk

Mathieu Odijk is an associate Professor at the University of Twente running his own research theme on Micro- and Nanodevices for Chemical Analysis. He received his PhD in Electrical Engineering from the University of Twente under the guidance of Albert van den Berg for his work on electrochemical microreactors for drug screening and proteomics applications in 2011. He has broaden his scope by various research visits at EPFL Lausanne (2012), the Wyss Institute at Harvard (2013), and MIT (2014).

The common aim of his research is to design novel devices to measure chemical quantities, pushing boundaries in applications to explore unknown territory. Often, this relates to faster, or better spatially resolved measurements at lower concentrations in small volumes. Micro- and nanofabrication techniques are used to enhance electrochemical, optical or mass spectrometric readout. The ultimate goal is to create new, yet robust tools for routine use in the lab or point-of-care applications.

Read Mathieu Odijk ’s Emerging Investigator article “A miniaturized push–pull-perfusion probe for few-second sampling of neurotransmitters in the mouse brain” and find out more about him in the interview below:

How has your research evolved from your first article to your most recent Emerging Investigator article?

I have nice memories about my first paper, as it was also submitted to Lab on Chip and immediately accepted without revisions (only one small question from 1 of the referee’s). The topic of that first paper was about the design of an electrochemical microreactor to study oxidative conversions in drug metabolism studies. We have been quite successful with that topic, now extending it also in the direction of studying electrochemical oxidative protein cleavage, and disulphide bond reduction using e.g. spectroelectrochemical means.

Many “ingredients” included in that first paper also are present in current projects such as microfluidics, advanced cleanroom fabrication, and analytical chemistry. These ingredients also form a key component of the focus area of my own research group (Micro- and nanodevices for Chemical Analysis).

 What aspect of your work are you most excited about at the moment?

It is my aim to push the boundaries of existing analytical tools with respect to limit detection, spatial or temporal resolution, or enhancing the number of repeats using high-throughput technology. I’m really excited about this latest paper demonstrating a miniaturized push-pull perfusion probe, as it is indeed improving both the spatial and temporal resolution by at least 1 order of magnitude compared to commercially available probes. As such, it is a nice showcase of what can be achieved by microfluidics.

In your opinion, what are the most important questions to be asked/answered in this field of research? 

I think it is really important to focus on the final application, and find good collaboration partners. If I take this push-pull perfusion probe as example, this research originated from discussions with neuroscientist who complained about a lack of temporal information from their existing microdialysis probes. However, quite a number of papers that describe probes with microfluidic channels only demonstrate in-vitro results. As we also found out in our project, bridging the gap towards in-vivo is certainly not trivial. It requires compromises in the technological area which you would not address if you stick to in-vitro experiments.

More generally I believe that the field has matured; lab on chip technology has become a means to achieve a higher goal. In this case this higher goal is to study neurochemical processes in the brain in more detail. However, I think this project also clearly demonstrates that there can be a lot of science in engineering. In this case we had to overcome challenges in microfabrication, fluid dynamics, mass-transport, protein chemistry, and adsorption kinetics.

What do you find most challenging about your research?

What I find really interesting is that my research is very multi-disciplinary in nature, crossing traditional boundaries such as “chemistry”, “physics”, or “biology”. However, that also poses a challenge as it is easy to develop a blind spot if you are exploring a new field of research. Again I would like to stress the importance of a good collaboration with experts in these fields to prevent failures at an early stage.

In which upcoming conferences or events may our readers meet you?

That is easy: I always try to attend MicroTAS.

How do you spend your spare time?

I’m a father of two small children, aged 1 and 4. If they leave me some spare time (and energy), I like to do woodworking, cycling, and indoor climbing. I also really like outdoors ice skating, but global warming is unfortunately interfering with the number of days ice skating is possible in the Netherlands.

Which profession would you choose if you were not a scientist?

I always wanted to be an inventor, with teacher as a close runner-up. I guess becoming a scientist is actually pretty close to that childhood dream. Any alternative profession should allow me to be able to either create new things, or educate other people (or both).

Can you share one piece of career-related advice or wisdom with other early career scientists?

At various points in my tenure track, I felt pressure to perform. This can be stressful and is most definitely counter-productive. Try to keep seeing/finding the fun in science, e.g. by asking your PhD students to share their Eureka moments in the lab with you. All the rest is of lesser importance.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series – Han Wei Hou

Dr. Han Wei Hou is currently an Assistant Professor at the School of Mechanical and Aerospace Engineering and the Lee Kong Chian School of Medicine (LKCMedicine), Nanyang Technological University (NTU), Singapore. He received his BEng (First Class Hons) and PhD degree in Biomedical Engineering from the National University of Singapore in 2008 and 2012, respectively. Upon graduation, he did his postdoctoral training at Massachusetts Institute of Technology (MIT), and subsequently joined LKCMedicine at NTU as the inaugural LKCMedicine Postdoctoral Fellow in 2014.

Dr. Hou has over 30 peer-reviewed scientific publications, and his work has been featured in online science (ScienceDaily, TheScientist, Cancerforall and Genomeweb), healthcare (News Medical), as well as technology magazines (Gizmag, Nanowerk). He has received several scientific awards including the Singapore-MIT Alliance for Research and Technology (SMART) Graduate Fellowship (2009), Young Investigator Award at the 6th World Congress of Biomechanics (2010), and LKCMedicine Postdoctoral Fellowship (2014).

 

His current research focus on developing novel microfluidics point-of-care testing, and biomimetic organ-on-chip technologies for translational diabetes and cardiovascular diseases research. (Research group website: www.hwhoulab.com)

Read Han Wei Hou’s Emerging Investigator article “Integrated inertial-impedance cytometry for rapid label-free leukocyte isolation and profiling of neutrophil extracellular traps (NETs)” and find out more about him in the interview below:

Your recent Emerging Investigator Series paper focuses on Integrated inertial-impedance cytometry for rapid label-free leukocyte isolation and profiling of neutrophil extracellular traps (NETs). How has your research evolved from your first article to your most recent Emerging Investigator article?

My first article when I was an undergraduate student was on the study of cancer biomechanics using microfluidics. Since then, I worked on other blood-related diseases such as malaria, sepsis and diabetes, and gradually became more interested towards microfluidics-enabled studies of host inflammation and immune responses in metabolic diseases. Regardless of disease type, our key idea is to develop integrated label-free cell sorting and biosensing approaches so that it can be cheap, fast and readily translated to clinical use. In my opinion, this work is a nice combination of all aspects.

What aspect of your work are you most excited about at the moment?

With this paper, we can now use a drop of blood to assess immune heath within minutes in a single-step user operation. We believe this work has great translational potential, and we are actively seeking new collaborators to test other diseases with immune dysfunctions.

In your opinion, what is the next step from creating your device to it being used for point-of-care testing in diabetes? and what are the most important questions to be asked/answered in this field of research?

Through this work and other recent work by our group, we have showed that diabetic leukocytes have distinct dielectric differences which can be used for immune health risk stratification. The next few important questions to ask is why are they different, and how we can further develop our technologies/assays to improve prognostic capabilities.

What do you find most challenging about your research?

As our work is highly interdisciplinary, the most challenging aspects are about finding the right people (collaborators, students etc.) and asking the right scientific questions (not too basic science, not too clinical and not too engineering)!

In which upcoming conferences or events may our readers meet you?

MicroTAS 2019 (Basel) and Microfluidics & Organ-on-a-Chip Asia Conference 2019 (Tokyo)

How do you spend your spare time?

Family time! Nowadays I enjoy spending time with my 18-month-old daughter Hannah, who never fails to amuse me or tire me out. If time permits, I will try to catch some US late-night talk shows too!

Which profession would you choose if you were not a scientist?

Tough choice! I’m torn between being a Lego/toy designer and a pilot.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Talk to people outside your research disciplines. Learn to unlearn things if necessary because science and technology is advancing so fast.

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Microfluidics for improving the natural gas extraction process

 

shale rock

Figure 1. Natural gas extraction from shale rock.

Shale is a type of fine-grained rock that contains silt, clay, mineral particles, and pores ranging from meter to nanometer scales. The high organic material content in shale rock is used in natural gas extraction, for which shale reservoirs are mechanically stimulated to create permeability in the pores. A preferred stimulation method is called hydraulic fracturing, where a pressurized fluid fractures shale stone and keeps the fractures open for gas extraction (Figure 1). Natural gas extraction from shale rock is a relatively new process compared to existing energy sources. It has attracted growing interest in America and Asia especially after the 2000s because of being an environmentally friendly alternative to other consumable energy sources. On the other hand, the gas industry currently struggles with optimizing the use of pore space and fractions for efficient extraction of the gas. In a newly opened shale rock reservoir, volatile components vaporize from meter to micrometer-scale pores first, leaving heavier components in hard-to-access nanometer-scale pores. Extraction of the remaining components is necessary for full utilization of the reservoirs but poses a hard-to-solve problem for the industry.

 

 

 

 

In a recent study published in Lab on Chip, David Sinton and co-authors review the current state of the technology and demonstrate a nano-scale physical model of shale with pores. The authors also study the dynamics of gas production in nanopores via imaging the system optically and developing an analytical model for gas vaporization. They first created a microchip model matching shale nanoporous matrix properties (e.g., dominant pore sizes and permeability) (Figure 2). The microchip model contained approximately 5800 pores connected via 23000 throats, where a hydrocarbon mixture was injected. In the model, the number of the small pores (≤10 nm) is designed to be greater than the number of the larger pores (∼100 nm) to store most of the accessible hydrocarbons. This pore size distribution captures the influence of nanoscale throats connecting the larger pores and is relevant to shale production. High, medium, and low superheat was applied to the filled microchip to investigate the spatiotemporal dynamics of vaporization via optical imaging. An analytical model and experimental results showed that phase change (liquid to vapor) in a pore is largely independent of phase change in neighboring pores.

This work supports the hypothesis that the rapid decline in production rates is due to a shift from the large connected features to the nanoporous matrix, as over time the smallest pores become enriched with heavier fractions. The authors reveal that vaporization rate slows down 3000 times thanks to the nanoscale throat bottlenecks at high temperatures, while the rates reduce further with vaporization of light components in large pores at low temperatures. Even the pores with 10 nm and fewer diameters can significantly influence the production from larger pores by severely gating transport. The authors found that this problem can be solved by applying very low pressures, although currently not available in the field, during the later stages of hydraulic fracturing. This finding seems to open a new avenue in the field of shale rock processing for energy.

Figure 2. Close up view of shale rock, the description of how the evaporation works, and the description of the microchip operation.

To download the full article for free* click the link below:

Natural gas vaporization in a nanoscale throat connected model of shale: multi-scale, multicomponent and multi-phase

Arnav Jatukaran, Junjie Zhong, Ali Abedini, Atena Sherbatian, Yinuo Zhao, Zhehui Jin, Farshid Mostowfi and David Sinton

Lab Chip, 2018, Lab on a Chip Articles

DOI: 10.1039/c8lc01053f

*Article free to read until 7th May 2019

About the Webwriter

Burcu Gumuscu is a researcher in Mesoscale Chemical Systems Group at University of Twente in the Netherlands. Her research interests include the development of microfluidic devices for quantitative analysis of proteins from single-cells, next generation sequencing, compartmentalized organ-on-chip studies, and desalination of water on the microscale.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series – Jessie S. Jeon

Dr. Jessie S. Jeon received her SB, SM, and PhD in Mechanical Engineering from Massachusetts Institute of Technology (2008, 2010, 2014), and worked as a research fellow at Beth Israel Deaconess Medical Center, (2014-2015). She has joined the KAIST faculty in the fall of 2015 as an assistant professor in the Department of Mechanical Engineering. Her research focuses on the development of microfluidic platform with applications in investigating biological systems. She plans to further develop the microfluidic system with the emphasis in fluidic aspects and also to extend its applications in mimicking various organ disease systems as well as other biological microenvironments. By doing so, she hopes to bridge the needs of biomedical research with the knowledge of mechanical engineering principles.

Read Jessie S. Jeon’s Emerging Investigator article “On-chip phenotypic investigation of combinatory antibiotic effects by generating orthogonal concentration gradients and find out more about her in the interview below: 

Your recent Emerging Investigator Series paper focuses on on-chip phenotypic investigation of combinatory antibiotic effects. How has your research evolved from your first article to this most recent article?

My group first worked on microfluidic-based single antibiotic testing platform where we could reduce the time it takes for antibiotic susceptibility testing (AST). As we learn more about AST, we realized that recently most studies on antibiotics focus on investigation of combinatory antibiotic effects. Since microfluidic platform enables combination of multiple channels, it was quite natural to try a combination of antibiotics in one chip.

What aspect of your work are you most excited about at the moment?

Broadly speaking, I am excited that we could potentially utilize our platform to screen for personalized medicine. That is to screen for patient specific therapy using microfluidic platform. The thought that our technology would contribute to enhance our lives definitely motivates me working on this topic.

In your opinion, what is the future of chip-based screening for clinical therapies?

I believe that with the development of lab-on-chips, we would be able to screen for the most optimal therapeutic strategy using a patient’s own cells, and this technology would bring the biggest impact to the society. This includes selection of strategy in terms of therapeutic methods as well as possibility in combinatory therapy either for antibiotics or anti-cancer drugs. That is also in line with my answer for the question above that I am very excited for the opportunities in personalized medicine with lab-on-a-chip technology.

What do you find most challenging about your research?

As a researcher in an interdisciplinary field, it is always challenging for me to identify meaningful biological and biomedical questions that I can address with my expertise. I realize that it is very important to keep keen relationships with clinicians and biologists.

In which upcoming conferences or events may our readers meet you?

I plan to attend the 2019 Annual Meeting of the Biomedical Engineering Society in coming October.

How do you spend your spare time?

I enjoy playing a variety of sports, mostly tennis these days, and I also try to spend more time with family on short trips whenever possible.

Which profession would you choose if you were not a scientist?

Perhaps I would be serving in military as I briefly took a part in the ROTC program when I was in college.

Can you share one piece of career-related advice or wisdom with other early career scientists?

While I’m still in a position needing much advice from others, I would like to share my thought that if you don’t give up, there will be opportunities to come.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Outstanding Reviewers for Lab on a Chip in 2018

We would like to highlight the Outstanding Reviewers for Lab on a Chip in 2018, as selected by the editorial team, for their significant contribution to the journal. The reviewers have been chosen based on the number, timeliness and quality of the reports completed over the last 12 months.

We would like to say a big thank you to those individuals listed here as well as to all of the reviewers that have supported the journal. Each Outstanding Reviewer will receive a certificate to give recognition for their significant contribution.

Dr Chia Hung Chen, National University of Singapore, Singapore
Professor Daniel Citterio, Keio University, Japan
Dr David Collins, MIT, United States
Professor Dino Di Carlo, University of California, Los Angeles, United States
Dr Mei He, Kansas State University, United States
Dr Daniel Irimia, Harvard Medical School, United States
Dr Séverine Le Gac, University of Twente, Netherlands
Dr Robert Meagher, Sandia National Laboratories, United States
Professor Michael Roper, Florida State University, United States
Dr Edmond Young, University of Toronto, Canada

We would also like to thank the Lab on a Chip board and the Lab on a Chip community for their continued support of the journal, as authors, reviewers and readers.

If you would like to become a reviewer for our journal, just email us at LOC-RSC@rsc.org with details of your research interests and an up-to-date CV or résumé. You can find more details in our author and reviewer resource centre

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Pioneers of Miniaturization Lectureship 2019: Open for Nominations

Lab on a Chip and Dolomite are proud to sponsor the fourteenth Pioneers of Miniaturization Lectureship, to honour and support the up and coming, next generation of scientists who have significantly contributed to the understanding or development of miniaturised systems.

This year’s Lectureship will be presented at the µTAS 2019 Conference in Basel, Switzerland with the recipient receiving a prize of US$2,000.

The Lectureship consists of the following elements:

  • A prize of US$2,000. No other financial contribution will be offered
  • A certificate recognising the winner of the lectureship
  • The awardee is required to give a short lecture at the 2019 µTAS Conference

 

Eligibility Criteria

To be eligible for the lectureship, candidates must:

  • Have completed their PhD
  • Be actively pursuing an independent research career on miniaturised systems.
  • Be at an early-mid career stage of their independent career (typically this will be within 15 years of completing their PhD, but appropriate consideration will be given to those who have taken a career break or followed a different study path).

Nomination process

To be considered for the 2019 lectureship, the following must be sent to the Editorial Office

  • A letter of recommendation with the candidate’s accomplishments and why the lectureship is deserved.
  • The nominee must be aware that he/she has been nominated for this lectureship.
  • A complete nomination form (includes list of the candidate’s relevant publications or recent work, candidate’s scientific CV, and full contact details)
  • Nominations from students and self-nominations are not permissible.

Selection criteria and judging process

  • Nominations must be made via email to loc-rsc@rsc.org using the Dolomite/Lab on a Chip Pioneers of Miniaturization Lectureship nomination form and a letter of recommendation.
  • The decision on the winner of the lectureship will be made by a panel of judges comprising a representative from Dolomite and members from the Lab on a Chip Editorial Board, coordinated by the Executive Editor of Lab on a Chip.
  • The award is for outstanding contributions to the understanding or development of miniaturised systems. This will be judged mainly through their top 1-3 papers and/or an invention documented by patents/or a commercial product. Awards and honorary memberships may also be considered.

Nomination Deadline: 31 May, 2019

Extended deadline : 15th June, 2019 

Download nomination form here

Previous Winners

  • 2018: Professor Sunghoon Kwon, Seoul National University, South Korea
  • 2017: Professor Aaron Wheeler, University of Toronto, Canada
  • 2016: Professor Daniel Irimia, Massachusetts General Hospital, USA
  • 2015: Professor Dino Di Carlo, University of California, Los Angeles, USA
  • 2014: Professor Sangeeta N. Bhatia, Massachusetts Institute of Technology, USA
  • 2013: Professor Shuichi Takayama, University of Michigan, USA
  • 2012: Professor Andrew deMello, ETH Zürich, Switzerland
  • 2011: Professor Ali Khademhosseini, Massachusetts Institute of Technology, USA
  • 2010: Professor Stephen Quake, Stanford University, USA
  • 2009: Professor Abe Lee, University of California, Irvine, USA
  • 2008: Dr Patrick Doyle, Massachusetts Institute of Technology, USA
  • 2007: Dr Manabu Tokeshi, Nagoya University, Japan
  • 2006: Dr David Beebe, University of Wisconsin, USA

Sponsors

Dolomite

Dolomite, part of the Blacktrace group, is the world leader in the design and manufacture of microfluidic products. Our systems are flexible and modular, allowing users to execute a wide range of applications in biology, chemistry, drug discovery, food, cosmetics, and academia. With expertise on hand, we can talk to you about your needs to ensure you find the right system for you and your research.

Lab on a Chip

Lab on a Chip provides a unique forum for the publication of significant and original work related to miniaturisation, at the micro- and nano-scale, of interest to a multidisciplinary readership. The journal seeks to publish work at the interface between physical technological advancements and high impact applications that are of direct interest to a broad audience.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

2019 Joint Ontario-on-a-Chip and TOeP Symposium

The 14th annual Ontario-on-a-Chip symposium will take place between 16th-17th May 2019 at the University of Toronto. The symposium will feature talks from the following keynote speakers: Dr. Peter Loskill from University of Tübingen, Dr. Wei Gao from Caltech, Dr. Michael Moore from Tulane University, and Dr. David Issadore from UPenn.

ORGANIZERS:

Dr. Edmond Young, Department of Mechanical & Industrial Engineering, University of Toronto

Dr. Milica Radisic, Institute of Biomaterials and Biomedical Engineering, University of Toronto

Dr. Xinyu Liu, Department of Mechanical & Industrial Engineering, University of Toronto

Registration is now open! Deadline to register will be midnight April 23, 2019. The deadline for abstract submission is April 15th, 2019!

The meeting will be held in the George Ignatieff Theatre located at:

15 Devonshire Pl, Toronto, ON M5S 2C8

More information about directions to the venue can be found at:

http://www.trinity.utoronto.ca/visit/bookings/git/audience.html

Any questions about the event, please contact dan.voicu@utoronto.ca.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New Associate Editor: Yoon-Kyoung Cho

We are delighted to announce that Professor Yoon-Kyoung Cho (UNIST, South Korea) has been appointed Associate Editor for Lab on a Chip.

Professor Cho joined Lab on a Chip in 2013 as an Editorial Board member and now joins Petra Dittrich, Hang Lu, Jianhua Qin, Manabu Tokeshi, Joel Voldman and Aaron Wheeler as Associate Editors handling the peer review of submissions to the journal.

Professor Yoon-Kyoung Cho is a Full Professor in Biomedical Engineering at Ulsan National Institute for Science and Technology (UNIST) and a group leader in the Center for Soft and Living Matter at the Institute for Basic Science (IBS), South Korea. She received her Ph.D. in Materials Science and Engineering from the University of Illinois at Urbana-Champaign in 1999, having obtained her M.S. and B.S. in Chemical Engineering from POSTECH in South Korea in 1994 and 1992, respectively. She worked as a senior researcher (1999–2008) at Samsung Advanced Institute of Technology (SAIT), where she participated in the development of in vitro diagnostic devices for biomedical applications.

Professor Yoon-Kyoung Cho’s research interests range from basic sciences to translational research in microfluidics and nanomedicine. Current research topics include a lab-on-a-disc for the detection of rare cells and extracellular biomarkers, quantitative analysis of single cells, and system analysis of cellular communication. Learn more about the Cho group at http://fruits.unist.ac.kr.

Some recent publications by Professor Cho in Lab on a Chip are shown below:

Cell migration in microengineered tumor environments Eujin Um, Jung Min Oh, Steve Granick and Yoon-Kyoung Cho

Fully automated, on-site isolation of cfDNA from whole blood for cancer therapy monitoring Chi-Ju Kim, Juhee Park, Vijaya Sunkara, Tae-Hyeong Kim, Yongjin Lee, Kyusang Lee, Mi-Hyun Kim and Yoon-Kyoung Cho

Urine-based liquid biopsy: non-invasive and sensitive AR-V7 detection in urinary EVs from patients with prostate cancer Hyun-Kyung Woo, Juhee Park, Ja Yoon Ku, Chan Ho Lee, Vijaya Sunkara, Hong Koo Ha and Yoon-Kyoung Cho

Professor Cho is also a Series Editor for Lab on a Chip’s Emerging Investigator Series alongside Dino Di Carlo and Piotr Garstecki. More details about the series and how to apply are available at rsc.li/loc-emerging

Please join us in welcoming Professor Yoon-Kyoung Cho to Lab on a Chip.

Submit to Professor Cho’s Editorial Office 

Interested in the latest news, research and events of Lab on a Chip journal? Find us on Twitter:@LabonaChip

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

RSC Analytical Chemistry journals Emerging Investigator Series

Our Analytical Chemistry journals Analyst, Analytical Methods and Lab on a Chip are committed to early career researchers in the analytical chemistry and engineering fields. Our Emerging Investigator Series provide a platform for early career researchers to showcase their best work to a broad audience.

If you have an independent career and are within 10 years of obtaining your PhD or within 5 years of your first independent position you may be eligible for our Analyst, Analytical Methods or Lab on a Chip Emerging Investigator Series.

Analyst Emerging Investigator Series

Series Editors: Ryan Bailey, Laura Lechuga and Jaebum Choo Find out more

Analytical Methods Emerging Investigator Series

Series Editors: Fiona Regan and Juan Garcia-Reyes Find out more

Lab on a Chip Emerging Investigator Series

Series Editors: Dino Di Carlo, Yoon-Kyoung Cho and Piotr Garstecki Find out more 

Appropriate consideration will be given to career breaks and alternative career paths.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Organ-on-a-Chip systems-translating concept into practice Thematic Collection

We are pleased to announce a new Thematic Collection on Organ-on-a-Chip systems, translating concept into practice!

The first collection of papers on “Organ-body-and disease-on-a-Chip” collection has proved to be popular with the community. The collection has given this emerging field an identity and an effective venue for others to learn of the breadth, depth, and importance of this emerging area. We are delighted to announce that Michael Shuler (Cornell University, USA) will be acting as Thought Leader this follow-up collection.

We believe that a second collection highlighting efforts to translate this concept into practice would be valuable. While proof-of-concept papers for potential devices remains important, there has been significant progress in the last two years towards addressing the practical issues of translating these concepts into workable systems that will be adopted by industry and approved by regulators. While pharmaceuticals remain the primary target, it is clear that these devices will play important roles in the cosmetic, food, and chemical industries.

For regulatory approval and industrial adoption these devices need to be simple (easy to run by a technician), largely self-contained, low cost, reliable, incorporate advanced analytical techniques, and have efficient software to convert measurements into predictions of human response. Some of the initial proof-of-concept devices are too complicated and hence costly to be implemented industrially.  For an academic paper a lab can afford to have a high failure rate of systems as long as sufficient systems function to provide a robust data set.  For an industrial setting a high success rate will be necessary for adoption.  Automation of devices and efficient data collection and interpretation will be necessary for systems to have a broad impact and reduce labour costs.  Although much of the industrial data are proprietary, it should be possible to take historical cases where a drug candidate was approved and then withdrawn from the market due to toxicity and determine if the failure of the drug could have been anticipated from studies with a microphysiological (MPS) system.  Such examples could provide a compelling rationale for inclusion of MPS systems particularly in the later stages of the preclinical drug development process.

A series of papers that address aspects of the issues involved in moving from “proof-of-principle” devices to systems that can be routinely incorporated into testing of drugs, cosmetics, food ingredients, and chemicals would be valuable to the development of the field of microphysiological systems. We seek contributions that will help us fulfill this goal.

Lab on a Chip publishes the best work on significant and original work related to minia-turisation, at the micro- and nano-scale, of interest to a multidisciplinary readership. The journal seeks to publish work at the interface between physical technological advancements and high impact applications that are of direct interest to a broad audience.

Extraordinarily novel organ-on-a-chip systems that demonstrate unique new functions are also welcome.

Interested in submitting to the collection? 

We welcome submissions of original research articles and reviews to this collection and the collection is open for submissions.

Articles will be published as they are accepted and added to this online collection. They will receive extensive promotion throughout the submission period and as a complete collection.

If you are interested in submitting to the series, please get in touch with the Lab on a Chip Editorial Office at loc-rsc@rsc.org.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)