Have you made a great scientific discovery but are not sure how to convert it into a commercially successful product?
The Dolomite Centre, in collaboration with Lab-on-a-Chip journal and Integrative Biology journal are pleased to announce that the Dolomite and Lab on a Chip Productizing Science® Competition 2015 will open on the 1st of October 2014
Lab on a Chip is proud to announce the first μTAS Video Competition, created in partnership with Dolomite Microfluidics and supported by the CBMS (the Chemical and Biological Microsystems Society).
We invite registered μTAS participants to submit short videos (see full conditions of entry below) that are either scientifically or educationally focused. Videos may be fun, artistic or just surprising and unusual in order to meet these criteria.
Dolomite Microfuidics, innovators in microfluidic solutions, have generously agreed to support this competition with $2500 worth of Dolomite equipment as the prize.
If you think you have the necessary visual science to take home the prize money, have a read of the entry conditions below!
Deadline 10th October 2014
Video Award Submission Process – Easy 3 Step Process
Step 1.Sign-In to the Electronic Form Using Your Registration Number (submissions can be made between July 25 and October 10, 2014. Form available at www.microTAS2014.org from July 25)
Please have your Abstract/Manuscript Number accessible. If you are unable to locate your Abstract/Manuscript Number, please contact info@microTAS2014.org.
Step 2. Fill in Remaining Information on Electronic Submission Form
Please fill in remaining information on the electronic submission form including title of image and your caption.
Step 3. Upload Your Video
All entries are to be submitted in MP4 or MOV format online via this website. Entries will not be accepted by email, fax, or post. Once your entry has been successfully uploaded and submitted, you will be given an entry number and you will be sent a confirmation email with the information you provided, minus the image. The ability to submit an image will close Friday, 10 October 2014 at 23:59 Honolulu, Hawaii, USA time (HST. GMT minus 10 hours).
Conditions of entry:
1. Only registered participants can take part/submit videos
2. Videos must be either scientific (demonstrating interesting aspects) or educational (enhancing understanding) with respect to micro or nanofluidics
3. Videos can be presented in a fun way
4. Videos can be presented in an artistic way
5. Videos can be presented in a surprising or unusual way
6. Videos can be enhanced by audio, animations or annotations, if necessary
7. Videos should be no longer than 2 minutes in length and file sizes must be compressed as much as possible for submission
8. Videos must be viewable on a PC without bespoke software
9. All submissions are submitted on the basis that they may be used by Lab on a Chip and/or CBMS for promotional purposes in any form
10. Judging by an international panel of judges will take place at μTAS 2014. The judge’s decision will be final and no discussion will be entertained.
11. The prize will be awarded at μTAS 2014 and a written voucher for the equipment will be handed over to the person submitting the winning entry.
Finally, just for a bit of inspiration, here’s a classic Lab on a Chip video from our YouTube Channel…enjoy!
Comments Off on New Video Competition at microTAS 2014!
Collaborators across the University of Augsburg, Harvard University, and the University of Glasgow create a fluorescence-activated cell sorter relying on acoustofluidics to guide particles to their final location.
Traditional fluorescence-activated cell and droplet sorting (FACS, FADS) machines are expensive and require considerable time for analysis as well as maintenance (i.e., rinsing and cleaning of tubing to prepare for RNase-free processing). Cheap and disposable microfluidic devices can alleviate the expense and maintenance required, but still lag in particle sorting speed because they depend on fluidic, dielectric, and magnetic actuation to direct particles after fluorescence interrogation.
Lothar Schmid, David Weitz, and Thomas Franke overcame these issues by using traveling surface acoustic waves (SAWs) to drive particles into select channels based on readout of a fluorescent signal. The group oscillated PDMS structures from below by embedded interdigitated transducers to achieve focused acoustic radiation forces which gently moved droplets and cells via acoustic streaming.
The group was able to achieve sorting independent of cell size and compressibility on the order of 3000 particles/second into multiple outlet channels. This fast separation of particles given fluorescence signal readout enables efficient sorting of populations which vary widely in shape and volume. Further, the particles did not have to be first encapsulated into drops. This simplification avoids biohazard aerosol formation, provides higher signal to noise on the fluorescent signal interrogation, and streamlines the separation process. The group demonstrated gentle sorting of melanoma cells in a single fluid based on metabolic activity and membrane integrity. It will be exciting to see how acoustic streaming can further be used to direct particles to aid rare cell separations and cell isolations from complex samples.
You can download the full article for free* until the 24th October 2014:
The transformation of time-varying signals into spatially-varying signals is fundamental for recording temporal information. For trees, growth rings that form throughout their lifetime provide a historical record of their growth conditions. Now, a team led by Sindy Tang at Stanford University, US, have designed a time capsule to record information about the occurrence of chemical events.
To read the fill article please visit Chemistry World.
In order to celebrate our new Impact Factor of 5.75, the following highly cited articles are free to access until 30th September 2014. Click on the links to download!