Lab-on-a-Chip: The Most Cited Articles of 2010 and 2011

Lab-on-a-Chip would like to present the most cited articles of 2010 and 2011! We would like to use this opportunity to highlight some of the excellent work that the miniaturisation community is producing right now, and to congratulate our authors on their fantastic achievements.    

As of now, all of the below articles will be free for 4 weeks (until Monday 16th Sept),* so make the most of this opportunity to download the full papers!    




Top 3 Cited Reviews:    

  1. CN Baroud et. al.: Dynamics of microfluidic droplets (DOI: 10.1039/c001191f).

    A critical review on the current understanding of the formation, transport and merging of drops in microfluidics. Baroud and colleagues discuss the physical ingredients that differentiate droplet microfluidics from single-phase microfluidics.

  2. YK Cho et. al.: Centrifugal microfluidics for biomedical applications (DOI: 10.1039/b924109d).

    A critical review on the biomedical applications of centrifugal microfluidics. Cho and colleagues review current sample-to-naswer systems and the challenges that must be faced before the centrifugal platform can be used as a new diagnostic platform.

  3.  GB Lee et. al.: Microfluidic cell culture systems for drug research (DOI: 10.1039/b921695b).

    A tutorial review on microfluidic cell cultures and their use in drug research. The review covers the issues of cell immobilisation, medium pumping and gradient generation, as well as providing examples of practical applications.


Top 10 Cited Research Papers:    

  1. GM Whitesides et. al.: Electrochemical sensing in paper-based microfluidic devices (DOI: 10.1039/b917150a).

    A paper on the fabrication and performance of microfluidic paper-based sensing devices. Whitesides and colleagues demonstrated that their paper-based electrochemical devices are capable of quantifying concentrations of various analytes, including heavy metal ions and glucose.

  2. D Di Carlo et. al.: Sheathless inertial cell ordering for extreme throughput flow cytometry (DOI: 10.1039/b919495a).

    A paper which demonstrates the use of a microfluidic device for flow-cytometry with extreme throughput. Di Carlo and colleagues demonstrated 86-97% cell counting sensitivity and specificity.


  3. A Ozcan et. al.: Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications (DOI: 10.1039/c000453g).

    Ozcan and colleagues demonstrate a lensless on-chip microscope weighing only approx. 46 g and dimensions smaller than 5 cm3. The microscope achieves subcellular resolution and may offer a cost-effective tool in the development of portable medicine.

  4. D Di Carlo et. al.: Deformability-based cell classification and enrichment using inertial microfluidics (DOI: 10.1039/c0lc00595a)

  5. BJ Kirby et. al.: Capture of circulating tumor cells from whole blood of prostate cancer patients using geometrically enhanced differential immunocapture (GEDI) and a prostate-specific antibody (DOI: 10.1039/b924420d)

  6. A Ozcan et. al.: Lensfree microscopy on a cellphone (DOI: 10.1039/c003477k)

  7. CF Carlborg et. al.: A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips (DOI: 10.1039/b914183a)

  8. T Franke et. al.: Surface acoustic wave actuated cell sorting (SAWACS) (DOI: 10.1039/b915522h)

  9. JL Osborn et. al.: Microfluidics without pumps: reinventing the T-sensor and H-filter in paper networks (DOI: 10.1039/c004821f)

  10. LG Griffith et. al.: Perfused multiwell plate for 3D liver tissue engineering (DOI: 10.1039/b913221j)


*free through an RSC publishing personal account  


Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Leave a Reply