Author Archive

Screening for the best organic energy storage materials

Héctor Abruña and coworkers at Cornell University report a computational method for screening potential candidate organic molecules for their energy storage properties. Organic materials are relatively cheap to produce and also lighter than the inorganic oxides most commonly used for energy storage at present.

The team discovered that certain combinations of functional groups consistently produced materials with better performance.

Read the full details of this exciting article today:

Tailored redox functionality of small organics for pseudocapacitive electrodes
Stephen E. Burkhardt, Michael A. Lowe, Sean Conte, Weidong Zhou, Hualei Qian, Gabriel G. Rodríguez-Calero, Jie Gao, Richard G. Hennig and Héctor D. Abruña
Energy Environ. Sci., 2012, DOI: 10.1039/C2EE21255B

table of contents image

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Interest in 3D solar cells grows

Jeffrey Grossman and coworkers communication on 3D solar energy harvesting has been highlighted in ScienceDaily. The MIT researchers modelled and built three-dimensional photovoltaic arrays which are able to provide more energy, more consistently throughout a day. The work was also highlighted in our recent blog article.

Read this HOT communication in full today:

Solar energy generation in three dimensions
Marco Bernardi, Nicola Ferralis, Jin H. Wan, Rachelle Villalon and Jeffrey C. Grossman
Energy Environ. Sci., 2012, DOI: 10.1039/C2EE21170J

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Upconverting layer improves solar cell efficiency

Researchers based in Australia have found a way to convert more of the energy from the sun into useful energy, without massively increasing the cost of the process.

Currently photons with energy below a certain threshold are not picked up by most solar cells, but by combining two photons to make a single photon of  higher energy (upconversion) more of the incoming radiation can be utilized.

Schmidt, Lips and co-workers describe a hydrogenated amorphous silicon (a-Si:H) solar cell backed by  a layer of palladium porphyrin capable of upconverting photons, which are then able to be radiated back into the a-Si:H layer and converted to useful energy.

Read this HOT paper in full today:

Improving the light-harvesting of amorphous silicon solar cells with photochemical upconversion
Yuen Yap Cheng, Burkhard Fückel, Rowan W. MacQueen, Tony Khoury, Raphaël G. C. R. Clady, Tim F. Schulze, N. J. Ekins-Daukes, Maxwell J. Crossley, Bernd Stannowski, Klaus Lips and Timothy W. Schmidt
Energy Environ. Sci., 2012, DOI: 10.1039/C2EE21136J

Graphical abstract image

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Proof-of-concept for inexpensive solar cells

Cost is a major drawback in the current silicon wafer technology used for photovoltaic cells. In this HOT communication Charles Teplin and co-workers report a proof-of concept solar cell using a thin film of crystal silicon grown on an inexpensive CaF2 “seed” layer.

Read the full details of this exciting Communication:

Biaxially-textured photovoltaic film crystal silicon on ion beam assisted deposition CaF2 seed layers on glass
James R. Groves , Joel B. Li , Bruce M. Clemens , Vincenzo LaSalvia , Falah Hasoon , Howard M. Branz and Charles W. Teplin
Energy Environ. Sci., 2012, DOI: 10.1039/C2EE21097E

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New solar cell has 10.1% efficiency!

David Mitzi and coworkers at the IBM T. J. Watson Research Center in New York have reported a new Cu2ZnSn(Se1–xSx)4-type solar cell (where x ≈ 0.03) which has a 10.1% power conversion efficiency. The authors used a liquid processing technique to control the S:Se ratio (and therefore band gap) in the cell.

This type of solar cell is made from elements that are relatively abundant making them good contenders for future affordable power generation from the sun.

Read this HOT article in full today:

Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency
Santanu Bag, Oki Gunawan, Tayfun Gokmen, Yu Zhu, Teodor Todorov and David Mitzi
Energy Environ. Sci., 2012, DOI: 10.1039/C2EE00056C

This paper comes hot on the heels of Professor Henry Snaith’s tutorial paper describing how to accurately measure the efficiency of solar cells. For more details read the full article:

How should you measure your excitonic solar cells?
Henry Snaith
Energy Environ. Sci., 2012, DOI: 10.1039/C2EE03429H

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

High impact theoretical and computational research in EES

Journal cover imageWe would like to share with you some great new theoretical and computational research published in Energy & Environmental Science. From communications of the highest novelty to reviews from experts in their field, you can read these important articles today.

With an Impact Factor of 9.49 and ranked #1 in its field, Energy & Environmental Science is the ideal place to publish your research. We invite you to submit your best theoretical and computational research to Energy & Environmental Science.

Read this high-impact theoretical and computational research:

Prediction of solid oxide fuel cell cathode activity with first-principles descriptors
Yueh-Lin Lee, Jesper Kleis, Jan Rossmeisl, Yang Shao-Horn and Dane Morgan
DOI: 10.1039/C1EE02032C

Theoretical studies of dye-sensitised solar cells: from electronic structure to elementary processes
Natalia Martsinovich and Alessandro Troisi
DOI: 10.1039/C1EE01906F

Proton-coupled electron transfer: classification scheme and guide to theoretical methods
Sharon Hammes-Schiffer
DOI: 10.1039/C2EE03361E

Quantum-mechanics-based design principles for solid oxide fuel cell cathode materials
Michele Pavone, Andrew M. Ritzmann and Emily A. Carter
DOI: 10.1039/C1EE02377B

Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics
Roberto Olivares-Amaya, Carlos Amador-Bedolla, Johannes Hachmann, Sule Atahan-Evrenk, Roel S. Sánchez-Carrera, Leslie Vogt and Alán Aspuru-Guzik
DOI: 10.1039/C1EE02056K

A perspective on the modeling of biomass processing
Na Guo, Stavros Caratzoulas, Douglas J. Doren, Stanley I. Sandler and Dionisios G. Vlachos
DOI: 10.1039/C2EE02663E

How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels
Andrew A. Peterson, Frank Abild-Pedersen, Felix Studt, Jan Rossmeisl and Jens K. Nørskov
DOI: 10.1039/C0EE00071J

The predicted crystal structure of Li4C6O6, an organic cathode material for Li-ion batteries, from first-principles multi-level computational methods
Dong-Hwa Seo, Hyungjun Kim, Haegyeom Kim, William A. Goddard and Kisuk Kang
DOI: 10.1039/C1EE02410H

Multiscale simulation and modelling of adsorptive processes for energy gas storage and carbon dioxide capture in porous coordination frameworks
Zhonghua Xiang, Dapeng Cao, Jianhui Lan, Wenchuan Wang and Darren P. Broom
DOI: 10.1039/C0EE00049C

Modeling and simulation of nuclear fuel materials
Ram Devanathan, Laurent Van Brutzel, Alain Chartier, Christine Guéneau, Ann E. Mattsson, Veena Tikare, Timothy Bartel, Theodore Besmann, Marius Stan and Paul Van Uffelen
DOI: 10.1039/C0EE00028K

Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations
Alexander Chroneos, Bilge Yildiz, Albert Tarancón, David Parfitt and John A. Kilner
DOI: 10.1039/C0EE00717J

First-principles modelling of complex perovskite (Ba1-xSrx)(Co1-yFey)O3-δ for solid oxide fuel cell and gas separation membrane applications
Yuri A. Mastrikov, Maija M. Kuklja, Eugene A. Kotomin and Joachim Maier
DOI: 10.1039/C0EE00096E

Prospects of on-chip fuel cell performance: improvement based on numerical simulation
Satoshi Tominaka, Sousuke Ohta, Tetsuya Osaka and Richard Alkire
DOI: 10.1039/C0EE00179A

Computational screening of perovskite metal oxides for optimal solar light capture
Ivano E. Castelli, Thomas Olsen, Soumendu Datta, David D. Landis, Søren Dahl, Kristian S. Thygesen and Karsten W. Jacobsen
DOI: 10.1039/C1EE02717D

Multiscale molecular simulations of the nanoscale morphologies of P3HT:PCBM blends for bulk heterojunction organic photovoltaic cells
Cheng-Kuang Lee, Chun-Wei Pao and Chih-Wei Chu
DOI: 10.1039/C1EE01508G

follow us on twitter

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Converting biomass to useful materials

Furfuryl alcohol can be derived from biomass and converted to levulinic acid – an important precursor compound for many useful chemicals including liquid fuels – via an acid-catalysed hydration reaction. US-based scientists have explored the mechanism of this conversion and noted several reaction pathways and intermediates.

This is a potentially very important step towards understanding this “green” route to high value compounds.

Read the full details of this exciting research today:

Experimental and Theoretical Studies of the Acid-Catalyzed Conversion of Furfuryl Alcohol to Levulinic Acid in Aqueous Solution
Gretchen Gonzalez Maldonado , Rajeev Surendran Assary , James Dumesic and Larry Curtis
DOI: 10.1039/C2EE03465D

follow us on twitter

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Challenges in Inorganic and Materials Chemistry (ISACS8)

Challenges in Inorganic and Materials Chemistry (ISACS8)

We are delighted to announce that registration is now open for Challenges in Inorganic and Materials Chemistry (ISACS8) which is being held on 19 – 22 July 2012 in Toronto, Canada. Register now to guarantee your place for this major conference whilst benefiting from the fantastic early bird savings currently available.

The oral abstract submission deadline is fast approaching so make sure you submit your abstract by February 24 2012 to present your work alongside sixteen outstanding plenary speakers.

For further details on this significant event, please visit the dedicated webpage.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

High impact reviews from Energy & Environmental Science

Journal cover imageWe would like to share with you some of the high impact review articles which have been published in Energy & Environmental Science (EES) in 2011.

From authoritative Reviews to personal Perspectives and Minireviews of exciting emerging areas, EES publishes review articles of the very highest quality and impact.

On behalf of Editor-in-Chief Nathan Lewis (Caltech) we invite you to submit your best research today.

Read a selection of our high impact reviews:

Graphene-based nanomaterials for energy storage
Martin Pumera
DOI: 10.1039/C0EE00295J

CO2 capture by solid adsorbents and their applications: current status and new trends
Qiang Wang, Jizhong Luo, Ziyi Zhong and Armando Borgna
DOI: 10.1039/C0EE00064G

Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells
Frédéric Jaouen, Eric Proietti, Michel Lefèvre, Régis Chenitz, Jean-Pol Dodelet, Gang Wu, Hoon Taek Chung, Christina Marie Johnston and Piotr Zelenay
DOI: 10.1039/C0EE00011F

Challenges in the development of advanced Li-ion batteries: a review
Vinodkumar Etacheri, Rotem Marom, Ran Elazari, Gregory Salitra and Doron Aurbach
DOI: 10.1039/C1EE01598B

Dye-sensitized solar cell redox shuttles
Thomas W. Hamann and Jesse W. Ondersma
DOI: 10.1039/C0EE00251H

Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels
Juan Carlos Serrano-Ruiz and James A. Dumesic
DOI: 10.1039/C0EE00436G

Current perspectives on gas hydrate resources
Ray Boswell and Timothy S. Collett
DOI: 10.1039/C0EE00203H

Development and challenges of LiFePO4 cathode material for lithium-ion batteries
Li-Xia Yuan, Zhao-Hui Wang, Wu-Xing Zhang, Xian-Luo Hu, Ji-Tao Chen, Yun-Hui Huang and John B. Goodenough
DOI: 10.1039/C0EE00029A

Organic non-fullerene acceptors for organic photovoltaics
Prashant Sonar, Jacelyn Pui Fong Lim and Khai Leok Chan
DOI: 10.1039/C0EE00668H

Graphene based new energy materials
Yiqing Sun, Qiong Wu and Gaoquan Shi
DOI: 10.1039/C0EE00683A

One-dimensional noble metal electrocatalysts: a promising structural paradigm for direct methanol fuel cells
Christopher Koenigsmann and Stanislaus S. Wong
DOI: 10.1039/C0EE00197J

Tandem polymer photovoltaic cells—current status, challenges and future outlook
Srinivas Sista, Ziruo Hong, Li-Min Chen and Yang Yang
DOI: 10.1039/C0EE00754D

Nanostructured silicon for high capacity lithium battery anodes
Jeannine R. Szczech and Song Jin
DOI: 10.1039/C0EE00281J

Carbon nanotubes and their composites in electrochemical applications
Grzegorz Lota, Krzysztof Fic and Elzbieta Frackowiak
DOI: 10.1039/C0EE00470G

Electrochemical CO2 sequestration in ionic liquids; a perspective
Neil V. Rees and Richard G. Compton
DOI: 10.1039/C0EE00580K

Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes
Adina Morozan, Bruno Jousselme and Serge Palacin
DOI: 10.1039/C0EE00601G

Solution-derived ZnO nanostructures for photoanodes of dye-sensitized solar cells
Feng Xu and Litao Sun
DOI: 10.1039/C0EE00448K

The role of buffer layers in polymer solar cells
Riccardo Po, Chiara Carbonera, Andrea Bernardi and Nadia Camaioni
DOI: 10.1039/C0EE00273A

Semiconductor/biomolecular composites for solar energy applications
Chuanhao Li, Feng Wang and Jimmy C. Yu
DOI: 10.1039/C0EE00162G

Zeolite-catalyzed biomass conversion to fuels and chemicals
Esben Taarning, Christian M. Osmundsen, Xiaobo Yang, Bodil Voss, Simon I. Andersen and Claus H. Christensen
DOI: 10.1039/C004518G

Advanced carbon aerogels for energy applications
Juergen Biener, Michael Stadermann, Matthew Suss, Marcus A. Worsley, Monika M. Biener, Klint A. Rose and Theodore F. Baumann
DOI: 10.1039/C0EE00627K

Underneath the fascinations of carbon nanotubes and graphene nanoribbons
Wei-Tao Zheng and Chang Q Sun
DOI: 10.1039/C0EE00434K

New conjugated polymers for plastic solar cells
David Gendron and Mario Leclerc
DOI: 10.1039/C1EE01072G

You can find many more excellent reviews on our website.

follow us on twitter

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

HOT EES Communication: Affordable solar cells move closer

Current photovoltaic technology relies on the use of silicon wafers which must be ultrapure and are very expensive to produce. Now Goyal and co-workers have come up with an exciting and much cheaper solution: thin films of silicon on a much cheaper Ni-W template.

Read the full details in this HOT EES communication today:

Heteroepitaxial film silicon solar cell grown on Ni-W foils
Sung Hun Wee, Claudia Cantoni, Thomas R. Fanning, Charles W. Teplin, Daniela F. Bogorin, Jon Bornstein, Karen Bowers, Paul Schroeter, Falah Hasoon, Howard M. Branz, M. Parans Paranthaman and Amit Goyal
DOI: 10.1039/C2EE03350J

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)