Archive for February, 2014

A Neutral Solution: Reliable PEC H2 Production at Near Neutral pH

In an exciting breakthrough in photoelectrochemical (PEC) solar generator development, a new report describes a methodology for robust H2 production in a near neutral environment.

Robust production of purified H2 in a stable, self-regulating, and continuously operating solar fuel generator

The development of practical, sustainable solar fuel generators comes with many challenges. Not only do the materials and components used need to be cost-effective and abundant, but the devices also need to be able to consistently produce purified fuels over long periods of time under environmentally benign conditions. A challenge to meeting all of these requirements has been in the creation of devices that are stable using either strong acid or basic electrolytes. A recent EES paper by Modestino et al. describes the development of a controlled recirculating stream across reactions sites to yield continuous solar-hydrogen generation in near neutral pH electrolytes.

In this report, researchers from the Joint Center for Artificial Photosynthesis and collaborating institutions describe alternate ion transport pathways that allow for operation under a near neutral pH. By creating a recirculation scheme to balance the concentration across the membrane in a membrane-separated photoelectrochemical (PEC) system, the authors achieved robust production of separated product streams (pure hydrogen and oxygen) via their ion-transport membrane components.

Designing a PEC device that operates using neutral pH electrolytes enables the use of catalytic and light absorbing components that would degrade in acidic or basic environments. The methodology described in this paper can provide researchers with a platform to experiment with different materials and hopefully optimize solar-to-hydrogen efficiency. It will be interesting to see the implementation of this methodology in future research, and if this approach ultimately provides a good solution to one major obstacle in the creation of scalable, sustainable, and robust solar fuel generators.

Read more in the full EES article here:

Robust production of purified H2 in a stable, self-regulating, and continuously operating solar fuel generator
Miguel A. Modestino, Karl A. Walczak, Alan Berger, Christopher M. Evans, Sophia Haussener, Carl Koval, John S. Newman, Joel W. Ager and Rachel A. Segalman
Energy Environ. Sci., 2014,7, 297-301
DOI: 10.1039/C3EE43214A

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

This week’s HOT articles

Take a look at this week’s selection! These articles are available free for a limited time: Graphical abstract: Uptake of self-secreted flavins as bound cofactors for extracellular electron transfer in Geobacter species

Transforming an oxygen-tolerant [NiFe] uptake hydrogenase into a proficient, reversible hydrogen producer
Bonnie J. Murphy, Frank Sargent and Fraser A. Armstrong
DOI: 10.1039/C3EE43652G, Paper

Uptake of self-secreted flavins as bound cofactors for extracellular electron transfer in Geobacter species
Akihiro Okamoto, Koichiro Saito, Kengo Inoue, Kenneth H. Nealson, Kazuhito Hashimoto and Ryuhei Nakamura
DOI: 10.1039/C3EE43674H, Communication

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Top 10 most-read EES articles – Q4 2013

This month sees the following articles in Energy & Environmental Science that are in the top 10 most accessed from October –December:

The energetic implications of curtailing versus storing solar- and wind-generated electricity
Charles J. Barnhart, Michael Dale, Adam R. Brandt and Sally M. Benson
Energy Environ. Sci., 2013,6, 2804-2810
DOI: 10.1039/C3EE41973H, Analysis

Low-temperature processed meso-superstructured to thin-film perovskite solar cells
James M. Ball, Michael M. Lee, Andrew Hey and Henry J. Snaith
Energy Environ. Sci., 2013,6, 1739-1743
DOI: 10.1039/C3EE40810H, Communication

Electrochemical energy storage in a sustainable modern society
John B. Goodenough
Energy Environ. Sci., 2014,7, 14-18
DOI: 10.1039/C3EE42613K, Opinion

Challenges in the development of advanced Li-ion batteries: a review
Vinodkumar Etacheri, Rotem Marom, Ran Elazari, Gregory Salitra and Doron Aurbach
Energy Environ. Sci., 2011,4, 3243-3262
DOI: 10.1039/C1EE01598B, Review Article

Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications
Haixin Chang and Hongkai Wu
Energy Environ. Sci., 2013,6, 3483-3507
DOI: 10.1039/C3EE42518E, Review Article

Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites
Tyler Stephenson, Zhi Li, Brian Olsen and David Mitlin
Energy Environ. Sci., 2014,7, 209-231
DOI: 10.1039/C3EE42591F, Review Article

Assessing the drivers of regional trends in solar photovoltaic manufacturing
Alan C. Goodrich, Douglas M. Powell, Ted L. James, Michael Woodhouse and Tonio Buonassisi
Energy Environ. Sci., 2013,6, 2811-2821
DOI: 10.1039/C3EE40701B, Analysis

Highly efficient organic tandem solar cells: a follow up review
Tayebeh Ameri, Ning Li and Christoph J. Brabec
Energy Environ. Sci., 2013,6, 2390-2413
DOI: 10.1039/C3EE40388B, Review Article

Depleted hole conductor-free lead halide iodide heterojunction solar cells
Waleed Abu Laban and Lioz Etgar
Energy Environ. Sci., 2013,6, 3249-3253
DOI: 10.1039/C3EE42282H, Communication

3D carbon based nanostructures for advanced supercapacitors
Hao Jiang, Pooi See Lee and Chunzhong Li
Energy Environ. Sci., 2013,6, 41-53
DOI: 10.1039/C2EE23284G, Review Article

Why not take a look at the articles today and blog your thoughts and comments below

Fancy submitting an article to EES? Then why not submit to us today!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Putting the power in power-dressing – EES article in Chemistry World

Scientists in the UK developing wearable electronics have knitted a flexible fabric that delivers twice the power output of current energy harvesting textiles.

There is considerable interest and research into wearable piezoelectric energy harvesters that use waste energy from human movement or the ambient environment to power low-energy consuming wearable devices, such as wireless sensors and consumer electronics. Typically these materials are ceramic-based with limited flexibility, so aren’t that comfortable to wear, and include toxic elements like lead. They also involve charge-collecting metallic electrodes with poor fatigue resistance that fail after repeated use. New, less rigid materials with sufficient mechanical strength and an all-in-one design are therefore highly sought after.

The polymeric piezoelectric fibres created by Navneet Soin at the University of Bolton and colleagues in the laboratory of Elias Siores fulfill all of the above: they are flexible, strong and breathable.

Interested to know more? Read the full news article by Polly Wilson on Chemistry World here…

Read the article by N Soin et al. in EES:

Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications
Navneet Soin, Tahir Shah, Subhash Anand, Junfeng Geng, Wiwat Pornwannachai, Pranab Mandal, David Reid, Surbhi Sharma, Ravi Hadimani, Derman Vatansever Bayramol and Elias Siores
Energy Environ. Sci., 2014, Accepted Manuscript
DOI: 10.1039/C3EE43987A, Paper

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

This week’s HOT article

Take a look at this week’s selection! This article is available free for a limited time: Graphical abstract: Spin caloritronics

Spin caloritronics
Stephen R. Boona, Roberto C. Myers and Joseph P. Heremans
DOI: 10.1039/C3EE43299H, Review Article

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

EES Issue 2 of 2014 out now!

Graphical abstract: Front coverThe latest issue of EES is now online. You can read the full issue here.

The outside front cover features the paper Exciton diffusion in organic photovoltaic cells by S. Matthew Menke and Russell J. Holmes.

Lead candidates for high-performance organic photovoltaics from high-throughput quantum chemistry – the Harvard Clean Energy Project is the paper highlighted on the inside front cover by Johannes Hachmann, Roberto Olivares-Amaya, Adrian Jinich, Anthony L. Appleton, Martin A. Blood-Forsythe, László R. Seress, Carolina Román-Salgado, Kai Trepte, Sule Atahan-Evrenk, Süleyman Er, Supriya Shrestha, Rajib Mondal, Anatoliy Sokolov, Zhenan Bao and Alán Aspuru-Guzik.

Issue 2 contains a number of excellent Analysis, Review and Perspective articles:

Energy demand and emissions of the non-energy sector
Vassilis Daioglou, Andre P. C. Faaij, Deger Saygin, Martin K. Patel, Birka Wicke and Detlef P. van Vuuren

Lithium metal anodes for rechargeable batteries
Wu Xu, Jiulin Wang, Fei Ding, Xilin Chen, Eduard Nasybulin, Yaohui Zhang and Ji-Guang ZhangGraphical abstract: Inside front cover

Recent progress on flexible lithium rechargeable batteries
Hyeokjo Gwon, Jihyun Hong, Haegyeom Kim, Dong-Hwa Seo, Seokwoo Jeon and Kisuk Kang

Enhancing SOFC cathode performance by surface modification through infiltration
Dong Ding, Xiaxi Li, Samson Yuxiu Lai, Kirk Gerdes and Meilin Liu

Heterogeneous nanocarbon materials for oxygen reduction reaction
Da-Wei Wang and Dangsheng Su

Directing the film structure of organic semiconductors via post-deposition processing for transistor and solar cell applications
Anna M. Hiszpanski and Yueh-Lin Loo

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Efficient recovery justifies silver’s use in solar cells – EES article in Chemistry World

Silver is a scarce raw material but the first real scale study of recycling polymer solar cells reveals that its use can be sustainable.

Putting up huge nubers of solar panels every day could help address the world’s energy crisis. ‘If you want to solve big problems, then the scale of whatever you are doing is also likely to be big, and so is any waste you generate,’ explains Frederik Krebs who led the study at the Technical University of Denmark. ‘This should therefore be part of your thinking when you are developing something.’

Silver is needed for solar cell electrodes but it is also a precious metal, cutting into both the cost of production and energy payback time of mass-produced solar cells. Now, Krebs’ team has demonstrated that 95% of the silver electrodes in polymer solar cell modules can be reclaimed as silver chloride after simply shredding the modules and soaking them in nitric acid. This yield would diminish the overall energy payback time of the solar cells from 139 days to 128 days, a decrease of 8%.

Interested to know more? Read the full news article by Jennifer Newton on Chemistry World here…

Read the article by R R Søndergaard et al. in EES:

Efficient decommissioning and recycling of polymer solar cells: justification for use of silver
Roar R. Søndergaard, Nieves Espinosa, Mikkel Jørgensen and Frederik C. Krebs
Energy Environ. Sci., 2014, Advance Article
DOI: 10.1039/C3EE43746A, Communication

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

This week’s HOT article

Take a look at this week’s selection! This article is available free for a limited time: Graphical abstract: Light harvesting vesicular donor–acceptor scaffold limits the rate of charge recombination in the presence of an electron donor

Light harvesting vesicular donor–acceptor scaffold limits the rate of charge recombination in the presence of an electron donor
Rijo T. Cheriya, Ajith R. Mallia and Mahesh Hariharan
DOI: 10.1039/C3EE43293A, Paper

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)