Archive for February, 2011

Energy & Environmental Science Issue 2 now online

February’s issue of Energy & Environmental Science is now published online – take a look at this great issue today

outside coverThis issue’s very artistic outside front cover* highlights the crucial role of electrode buffer layers for the overall performance of polymer solar cells, as discussed in the Review by Nadia Camaioni and colleagues.

The role of buffer layers in polymer solar cells
Riccardo Po, Chiara Carbonera, Andrea Bernardi and Nadia Camaioni
Energy Environ. Sci., 2011, 4, 285-310

inside cover

The inside front cover (equally as impressive artwork!) features the work of Amanda Barnard, looking at the  photocatalytic activity or potential free radical toxicity of titania at the nanoscale.

Mapping the photocatalytic activity or potential free radical toxicity of nanoscale titania
Amanda S. Barnard
Energy Environ. Sci., 2011, 4, 439-443

*Image adapted by Dr Maddalena Pezzani from Graur Razvan Ionut / FreeDigitalPhotos.net (image of sky), Sapere.it (image of hieroglyphic carvings), and Konarka Power Plastic(R) by George Disario (PV module). Image reproduced by permission of Dr Nadia Camaioni from Energy Environ. Sci., 2011, 4, 285.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Bridging the gap in energy storage materials

Perspective article – nanostructured carbon-based electrodes could be the answer…

The fast evolution of portable electronic devices and micro-electro-mechanical systems (MEMS) requires energy sources that have high power, high energy, long cycle life, and the adaptability to various substrates.

Two excellent candidates are lithium-ion batteries, which can store high energy on a gravimetric and volumetric basis but have relatively low power, and electrochemical capacitors (ECs) which are ideal for high power applications, but are limited for energy storage. There is now a need to develop materials with both high power and energy storage capabilities.

Nanostructured carbon-based electrodes

Currently, the excellent performance of nanostructured electrodes with thickness of a few microns can be integrated on Si chips or flexible plastic substrates, suggesting promising energy sources for portable electronic devices and micro-electro-mechanical systems (MEMS). If these nanostructured electrodes can be successfully scaled up to a thickness of hundreds of microns without losing performance, they could be promising for incorporation into electric vehicles, heavy machinery, and load-leveling applications.

Read the feature review today:
Nanostructured carbon-based electrodes: bridging the gap between thin-film lithium-ion batteries and electrochemical capacitors
Seung Woo Lee, Betar M. Gallant, Hye Ryung Byon, Paula T. Hammond and Yang Shao-Horn
Energy Environ. Sci., 2011, DOI: 10.1039/C0EE00642D

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)