Archive for the ‘News’ Category

Philip Mountford awarded 2015 Schlenk Lectureship

Philip Mountford

Congratulations to Professor Philip Mountford (University of Oxford; Chair of the Dalton Transactions Editorial Board), for his recent 2015 Schlenk Lectureship award, sponsored by BASF and the University of Tübingen, Germany, for his outstanding research into small molecule activation chemistry.

The Schlenk Lecture was established to honour the seminal work and research of Wilhelm Johann Schlenk; it includes a monetary prize, guest professorship, and additional allowances for accommodation and travelling. Previous prize winners are Professor Warren Piers (University of Calgary, 2011; Associate Editor, Dalton Transactions Editorial Board), and Kyoko Nozaki (Tokyo University, 2013).

Congratulations, Professor Mountford!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Dalton Transactions Lecture at the University of California, Berkeley 2015

The 2014 Dalton Transactions Lecture awardee – Professor Christine Thomas (Brandeis University) – delivered her presentation at UC Berkeley last month. This Lecture is awarded annually to an exceptional young inorganic chemist in the Americas. Previous recipients are:

Christine Thomas2013 Trevor Hayton (UCSB)
2012 Teri Odom (Northwestern University)
2011 Daniel Gamelin (U Washington)
2010 Paul Chirik (Princeton University)
2009 Francois Gabbai (Texas A & M University)
2008 Dan Mindiola (Indiana University)
2007 Geoff Coates (Cornell University)
2006 John Hartwig (University of Illinois at Urbana-Champaign)
2005 Kit Cummins (MIT)

Each Dalton Transactions Lecture awardee is provided with an honorarium and a commemorative plaque.

Professor Thomas is an Associate Professor of Chemistry at Brandeis University, and her research program focuses on synthetic inorganic, organometallic and bioinorganic chemistry.

In 2010, Professor Thomas was selected for the U.S. Department of Energy’s Early Career Research Program and in 2011, she was named a Alfred P. Sloan Fellow. Christine is also the recipient of a 2012 National Science Foundation CAREER award and was selected as a 2012 Organometallics Fellow and a 2013/2014 Chemical Communications Emerging Investigator. Her dedication to teaching was recognized with The 2012 Michael L. Walzer ’56 Award for Excellence in Teaching at Brandeis. In 2012, she joined the Advisory Board for Chemical Communications and, as of May 2014, she is an Associate Editor for Dalton Transactions.

Congratulations to Professor Thomas for her Dalton Transactions Lecture award!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Poster prize winners at the RSC Southern Dalton Meeting April 2015

Congratulations to the below poster prize winners who were awarded prizes during the RSC Southern Dalton Meeting April 2015 which took place in Falmer, Brighton from the 20th – 21st April 2015.

From left to right: Christopher Wright (Oxford), Irene Maluenda (Sussex) and James Lawson (Manchester)

From left to right: Christopher Wright (Oxford), Irene Maluenda (Sussex) and James Lawson (Manchester)

The conference was a Regional meeting arranged by the Dalton Division at the Royal Society of Chemistry to discuss all aspects of inorganic chemistry. Invited speakers were Professors Polly Arnold, (University of Edinburgh) and Eric Meggers (Philipps-Universität Marburg, Germany).

A poster session was held for postgraduate students and the following were awarded poster prizes: James Lawson (Manchester), Christopher Wright (Oxford) and Irene Maluenda (Sussex).

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

The 6th International IMBG Meeting & Advanced Courses

6th International IMBG MeetingDalton Transactions and Metallomics are proud to be sponsoring poster prizes for the 6th International IMBG Meeting on Chemistry & Biology of Iron-Sulfur Clusters.
The meeting will be held on 13-18 September 2015, in Villard de Lans, a village located near Grenoble, France, in the beautiful surrounding of the Vercors mountains. It will include a two-day Advanced Course followed by a two and half day Conference.

Click here for full information and register today!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

The XIII International Symposium on Inorganic Biochemistry

We are pleased to congratulate Henryk Kozłowski, a Chartered Scientist of the Royal Society of Chemistry, on his 70th birthday and >90 articles in Dalton Transactions (including Journal of the Chemical Society, Dalton Transactions).Henryk Kozlowski

Dalton Transactions is delighted to be sponsoring the XIII International Symposium on Inorganic Biochemistry, organized between 1st and 6th September 2015 in Karpacz, Poland. The first International Symposium on Inorganic Biochemistry, first of the series of conferences organized by Henryk, also took place in Karpacz, and now, three decades later, it is there again, in close proximity to where it took place for the first time. This year’s conference will be quite special; we will all celebrate Henryk’s very important anniversary.

As usual, the conference aims to provide a valuable discussion forum on recent advances in cross-cutting fields of inorganic, coordination and bioinorganic chemistry with biology and medicine, in particular discussing topics such as chemical structure and thermodynamics, solution equilibria and coordination chemistry of metals with biomolecules; transport, homeostasis and toxicity of metals in diseases; metal-based therapy and diagnostics. More information will soon be available at www.henryk.uni.wroc.pl.

Henryk Kozłowski is the founder of Polish bioinorganic chemistry, currently working at the interface between chemistry and biology. At the Department of Chemistry, University of Wroclaw, he created one of the most dynamic research teams – the Bioinorganic and Biomedical Chemistry group. Apart from his contribution to the Royal Society of Chemistry, the list of his most important honors and awards include: the Membership of the Polish Academy of Sciences and the National Science Centre, honorary doctorates from the Taras Shevchenko University in Kiev and the University of Gdansk, the prestigious Marie Curie National Science Award in Chemistry and numerous awards of the Minister of Polish Science.

Henryk has been a visiting Professor at the Universities of Strasbourg, Siena, Ferrara, Florence, Sassari, Cagliari, Lille, Dunkirk and Paris. His scientific achievements include 33 supervised PhDs, a Hirsch index of 42, over 500 original papers, 17 book chapters, over 350 invited lectures given at international conferences and at various universities; he has been cited over 9400 times.

Happy birthday, Henryk!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Russell Morris wins Peter Day Award 2015

Russell Morris

Russell Morris, 2015 winner of the Peter Day Award

Many congratulations to our Dalton Transactions Editorial Board member Professor Russell Morris, on winning the Royal Society of Chemistry 2015 Peter Day Award, for his pioneering work on the chemistry of porous solids, especially his discovery of the Assembly-Disassembly-Organisation-Reorganisation route to zeolite synthesis.

Russell is Professor of Structural and Materials Chemistry at the University of St. Andrews, and his research interests lie in the synthesis, characterisation and application of porous solids.

Please take a look here to find out more about Russell. Other recipients of RSC awards can be found here.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Professor Warren Piers wins Humboldt Research Award

Warren Piers

Warren Piers

We are very proud to announce that Professor Warren Piers (Associate Editor, Dalton Transactions Editorial Board) has recently been elected as the recipient of a Humboldt Research Award.

This award is conferred in recognition of lifetime achievements in research. In addition, the award winners are invited to carry out research projects of their own choice in cooperation with specialist colleagues in Germany, thereby further promoting international scientific cooperation.

Talking about his award, Professor Piers said “This is an exciting chance for me to deepen my relationships with German colleagues and develop collaborations with leading scientists in the area of catalysis using first row transition metal-based compounds.  I’m very grateful to the Humboldt Foundation for this opportunity.”

Professor Piers was nominated for this award by Professor Reiner Anwander, Universitaet Tuebingen, Germany.

Further information can be found on the Humboldt Foundation website.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New HOT articles

Take a look at our HOT articles for May. These are only free to acess for 4 weeks only and are available for viewing in a collection on our website

Synthesis of CuInS2 nanocrystals from a molecular complex – characterization of the orthorhombic domain structure
Jorge L. Cholula-Díaz, Gerald Wagner, Dirk Friedrich, Oliver Oeckler and Harald Krautscheid
Dalton Trans., 2015, Advance Article
DOI: 10.1039/C5DT00419E

Graphical Abstract

 

Free to access until 30th June 2015


A cascade approach to hetero-pentanuclear manganese-oxide clusters in polyoxometalates and their single-molecule magnet properties
Kosuke Suzuki, Rinta Sato, Takuo Minato, Masahiro Shinoe, Kazuya Yamaguchi and Noritaka Mizuno
Dalton Trans., 2015, Advance Article
DOI: 10.1039/C5DT01363A

Graphical Abstract

 

Free to access until 30th June 2015


 

Quantum chemical and solution phase evaluation of metallocenes as reducing agents for the prospective atomic layer deposition of copper
Gangotri Dey, Jacqueline S. Wrench, Dirk J. Hagen, Lynette Keeney and Simon D. Elliott
Dalton Trans., 2015, Advance Article
DOI: 10.1039/C5DT00922G

Graphical Abstract

Free to access until 16th June 2015


Synthesis of copper ion incorporated horseradish peroxidase-based hybrid nanoflowers for enhanced catalytic activity and stability
Burcu Somturk, Mehmet Hancer, Ismail Ocsoy and Nalan Özdemir
Dalton Trans., 2015, Advance Article
DOI: 10.1039/C5DT01250C

Graphical Abstract

Free to access until 16th June 2015


Platinum carbon bond formation via Cu(I) catalyzed Stille-type transmetallation: reaction scope and spectroscopic study of platinum-arylene complexes
Ali S. Gundogan, Xiangli Meng, Russell W. Winkel and Kirk S. Schanze
Dalton Trans., 2015, Advance Article
DOI: 10.1039/C5DT00538H

Graphical Abstract

Free to access until 16th June 2015


Exceptionally rapid CO release from a manganese(I) tricarbonyl complex derived from bis(4-chloro-phenylimino)acenaphthene upon exposure to visible light
Samantha J. Carrington, Indranil Chakraborty and Pradip K. Mascharak
Dalton Trans., 2015, Advance Article
DOI: 10.1039/C5DT01007A

Graphical Abstract

Free to access until 16th June 2015


5-(Fluorodinitromethyl)-2H-tetrazole and its tetrazolates – Preparation and Characterization of New High Energy Compounds
Ralf Haiges and Karl O. Christe
Dalton Trans., 2015, Advance Article
DOI: 10.1039/C5DT00291E 

Graphical Abstract

Free to access until 25th May 2015


Synthesis of magnesium ZIF-8 from Mg(BH4)2
S. Horike, K. Kadota, T. Itakura, M. Inukai and S. Kitagawa
Dalton Trans., 2015, Advance Article
DOI: 10.1039/C5DT01183C 

Graphical Abstract 

Free to access until 25th May 2015

 


16-Electron pentadienyl- and cyclopentadienyl-ruthenium half-sandwich complexes with bis(imidazol-2-imine) ligands and their use in catalytic transfer hydrogenation
Thomas Glöge, Kristof Jess, Thomas Bannenberg, Peter G. Jones, Nadine Langenscheidt-Dabringhausen, Albrecht Salzer and Matthias Tamm
Dalton Trans., 2015, Advance Article
DOI: 10.1039/C5DT01080B 

Graphical Abstract 

Free to access until 25th May 2015 


 

Structural and electronic characterization of multi-electron reduced naphthalene (BIAN) cobaloximes
Owen M. Williams, Alan H. Cowley and Michael J. Rose
Dalton Trans., 2015, Advance Article
DOI: 10.1039/C5DT00924C 

Graphical Abstract 

Free to access until 25th May 2015

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

A collection of papers in memory of Professor Robert Williams

Professor Robert Williams, Oxford, inorganic, Biological ChemistryProfessor Robert (Bob) Williams died this March at the age of 89. He was a true pioneer in the field of bio-inorganic chemistry – especially concerning the role of calcium as a biological messenger – and contributed substantially to our understanding of the evolution of life. Professor Williams was often considered as one of the first people to start thinking about metallomics as a field, and will be greatly missed amongst his peers.

In memory of Professor Williams’ huge contribution to the field, we have collated a number of his publications across Metallomics, Dalton Transactions and ChemComm below. We hope you enjoy revisiting some of his exceptional work.

Copper proteomes, phylogenetics and evolution, L. Decaria, I. Bertini, R.J.P. Williams, Metallomics, 2011, 56–60

Zinc proteomes, phylogenetics and evolution, L. Decaria, I. Bertini, R.J.P. Williams, Metallomics, 2010, 706–709

A chemical systems approach to evolution, R.J.P. Williams, Dalton Transactions, 2007, 991–1001

Metallo-enzyme catalysis, R.J.P. Williams, Chemical Communications, 2003, 1109–1113

The chemical elements of life, R.J.P. Williams, Journal of the Chemical Society, Dalton Transactions, 1991, 539–546

Temperature study of the solution conformations of aqueous lanthanide(III) complexes containing monodentate ligands, A.L. Du Preez, S. Naidoo, R.J.P. Williams, Journal of the Chemical Society, Dalton Transactions, 1988, 2315–2321

A proton NMR study of some CoII complexes containing the N-hexadecyl-iminodiacetate ligand, C.J. Rix, R.J.P. Williams, Journal of the Chemical Society, Chemical Communications, 1986, 203–205

Solution conformation of aqueous lanthanide(III)-antipyrine complexes, A.L. Du Preez, R.J.P. Williams, Journal of the Chemical Society, Dalton Transactions, 1986, 1425–1429

Precipitation within unilamellar vesicles. Part 1. Studies of silver(I) oxide formation, S. Mann, R.J.P. Williams, Journal of the Chemical Society, Dalton Transactions, 1983, 311–316

Precipitation within unilamellar vesicles. Part 2. Membrane control of ion transport, S. Mann, M.J. Kime, R.G. Ratcliffe, R.J.P. Williams, Journal of the Chemical Society, Dalton Transactions, 1983, 771–774

The characterisation of the nature of silica in biological systems, S. Mann, C.C. Perry, R.J.P. Williams, C.A. Fyfe, G.C. Gobbi, G.J. Kennedy, Journal of the Chemical Society, Chemical Communications, 1983, 168–170

New organo-metallic reagents for electron microscopy, S. Mann, R.J.P. Williams, P.R. Sethuraman, M.T. Pope, Journal of the Chemical Society, Chemical Communications, 1981, 1083–1084

Solid state phosphorus NMR spectroscopy of minerals and soils, R.J.P. Williams, R.G.F. Giles, A.M. Posner, Journal of the Chemical Society, Chemical Communications, 1981, 1051–1052

Electron relaxation rates of lanthanide aquo-cations, B.M. Alsaadi, F.J.C. Rossotti, R.J.P. Williams, Journal of the Chemical Society, Dalton Transactions, 1980, 2147–2150

Hydration of complexone complexes of lanthanide cations, B.M. Alsaadi, F.J.C. Rossotti, R.J.P. Williams, Journal of the Chemical Society, Dalton Transactions, 1980, 2151–2154

Preparation of Ag2O crystallites within phospholipid vesicles and their use in nucleation studies, J.L. Hutchison, S. Mann, A.J. Skarnulis, R.J.P. Williams, Journal of the Chemical Society, Chemical Communications, 1980, 634–635

Studies of lanthanide (III) dipicolinate complexes in aqueous solution. Part 2. Hydration, B.M. Alsaadi, F.J.C. Rossotti, R.J.P. Williams, Journal of the Chemical Society, Dalton Transactions, 1980, 813–816

Studies of lanthanide(III) pyridine-2,6-dicarboxylate complexes in aqueous solution. Part 1. Structures and 1H nuclear magnetic resonance spectra, B.M. Alsaadi, F.J.C. Rossotti, R.J.P. Williams, Journal of the Chemical Society, Dalton Transactions, 1980, 597–602

Location of biological compartments by high resolution NMR spectroscopy and electron microscopy using magnetite-containing vesicles, S. Mann, A.J. Skarnulis, R.J.P. Williams, Journal of the Chemical Society, Chemical Communications, 1979, 1067–1068

Mapping organic molecules in biological space by high resolution NMR spectroscopy and electron microscopy, A.J. Skarnulis, P.J. Strong, R.J.P. Williams, Journal of the Chemical Society, Chemical Communications, 1978, 1030–1032

An investigation of some potential uses of the gadolinium(III) ion as a structural probe, E.C.N.F. Geraldes, R.J.P. Williams, Journal of the Chemical Society, Dalton Transactions, 1977, 1721–1726

Structure of lanthanide(III) mono- and bis-dipicolinates in solution, B.M. Alsaadi, F.J.C. Rossotti, R.J.P. Williams, Journal of the Chemical Society, Chemical Communications, 1977, 527–529

Assignment of the NMR spectrum of iron(III) protoporphyrin IX dicyanide using paramagnetic shift and broadening probes, J.G. Brassington, R.J.P. Williams, P.E. Wright, Journal of the Chemical Society, Chemical Communications, 1975, 338–340

Conformational studies of peroxidase-substrate complexes. Structure of the indolepropionic acid-horseradish peroxidase complex, P.S. Burns, R.J.P. Williams, P.E. Wright, Journal of the Chemical Society, Chemical Communications, 1975, 795–796

The temperature dependence of some physical properties of cobinamides and cobalamins, S.A. Cockle, O.D. Hensens, H.A.O. Hill, R.J.P. Williams, Journal of the Chemical Society, Dalton Transactions, 1975, 2633–2634

Conformational studies of lanthanide complexes with carboxylate ligands, B.A. Levine, J.M. Thornton, R.J.P. Williams, Journal of the Chemical Society, Chemical Communications, 1974, 669–670

Ethylenediaminetetra-acetato-lanthanate(III), -praesodimate(III), -europate(III), and -gadolinate(III) complexes as nuclear magnetic resonance probes of the molecular conformations of adenosine 5′- monophosphate and cytidine 5′-monophosphate in solution, C.M. Dobson, R.J.P. Williams, A.V. Xavier, Journal of the Chemical Society, Dalton Transactions, 1974, 1762–1764

Intramolecular nuclear Overhauser effects in proton magnetic resonance spectra of proteins, I.D. Campbell, C.M. Dobson, R.J.P. Williams, Journal of the Chemical Society, Chemical Communications, 1974, 888–889

Lanthanoid(III) cations as nuclear magnetic resonance conformational probes: Studies on cytidine 5′-monophosphate at pH 2, C.D. Barry, C.M. Dobson, R.J.P. Williams, A.V. Xavier, Journal of the Chemical Society, Dalton Transactions, 1974, 1765-1769

Nuclear magnetic resonance spectra of dimeric cupric compounds, W. Byers, R.J.P. Williams, Journal of the Chemical Society, Dalton Transactions, 1973, 555–560

Separation of contact and pseudo-contact contributions to shifts induced by lanthanide(III) ions in nuclear magnetic resonance spectra, C.M. Dobson, R.J.P. Williams, A.V. Xavier, Journal of the Chemical Society, Dalton Transactions, 1973, 2662–2664

The effect of 1,3,5-trinitrobenzene on 1H nuclear magnetic resonance and electron paramagnetic resonance spectra of some cobalt(II) porphyrins, H.A.O. Hill, P.J. Sadler, R.J.P. Williams, Journal of the Chemical Society, Dalton Transactions, 1973, 1663–1667

Origin of lanthanide nuclear magnetic resonance shifts and their uses, B. Bleaney, C.M. Dobson, B.A. Levine, R.B. Martin, R.J.P. Williams, A.V. Xavier, Journal of the Chemical Society, Chemical Communications, 1972, 791b–793

The chemistry of vitamin B12. Part XVI. Binding of thiols to the cobalt(II) corrins, S. Cockle, H.A.O. Hill, S. Ridsdale, R.J.P. Williams, Journal of the Chemical Society, Dalton Transactions, 1972, 297–302

A method of assigning 13C nuclear magnetic resonance spectra using europium(III) ion-induced pseudocontact shifts and C-H heteronuclear spin decoupling techniques, B. Birdsall, J. Feeney, J.A. Glasel, R.J.P. Williams, A.V. Xavier, Journal of the Chemical Society D: Chemical Communications, 1971, 1473–1474

Methylation by methyl vitamin B12, G. Agnes, S. Bendle, H.A.O. Hill, F.R. Williams, R.J.P. Williams, Journal of the Chemical Society D: Chemical Communications, 1971, 850–851

Kinetics of substitution of co-ordinated carbanions in cobalt(III) corrinoids, H.A.O. Hill, J.M. Pratt, S. Ridsdale, F.R. Williams, R.J.P. Williams, Journal of the Chemical Society D: Chemical Communications, 1970, 341

Thallium(I) as a potassium probe in biological systems, J.P. Manners, K.G. Morallee, R.J.P. Williams, Journal of the Chemical Society D: Chemical Communications, 1970, 965–966

The lanthanide cations as nuclear magnetic resonance probes of biological systems, K.G. Morallee, E. Nieboer, F.J.C. Rossotti, R.J.P. Williams, A.V. Xavier, R.A. Dwek, Journal of the Chemical Society D: Chemical Communications, 1970, 1132–1133

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

The carbon‒metal bond and C‒H metalation: In celebration of the career of William C. Kaska

This themed collection on the carbon‒metal bond and C‒H metalation is devoted to the career of Professor William (Bill) Kaska, who will celebrate his 80th birthday on May the 13th, 2015. Bill was a faculty member at The University of California at Santa Barbara for the entirety of his 41-year independent career (1964‒2004). During this time, he supervised many graduate students and post-doctoral scholars, a large number of whom are active in teaching, research, and in industry positions today.

Professor William (Bill) Charles Kaska

Professor William (Bill) Charles Kaska

Throughout his career, Bill has been a true pioneer and adventurer in organometallic chemistry, bearing the innate synthetic flair and expertise to make unusual molecules where others had tried and failed. He has made several important (and perhaps under-recognized) impacts in the field of metal-mediated C‒H activation, as well as in several other areas of organometallic chemistry (see below). Perhaps most notably, Bill was one of the first researchers to realize the power of C‒H bond metalation using transition metals and his early work demonstrated some of the first reported instances of such chemistry.

During his career, Bill collaborated with many groups around the World, and was a visiting scientist at Monsanto in Zurich, at the Universities of Cambridge, Erlangen, Tübingen and Utrecht, and at the Max-Planck Institute in Mülheim. We celebrate the achievements of Bill, his mentors and co-workers in this themed collection: the publications kindly dedicated to this celebratory themed collection serve to illustrate how far the field has come since the publication of a number of seminal results over 40 years ago.


Beginnings

Bill Kaska was born, raised and educated in Ancón, a suburb of Panama City, located in the then U.S.-controlled Canal Zone. He graduated from Loyola University in Los Angeles in 1957 and subsequently joined the group of Professor John J. Eisch at St. Louis University. Eisch had just returned to the United States from a post-doctoral position with Professor Karl Ziegler in Mülheim, Germany. Bill was one of Eisch’s first graduate students, charged with the task of investigating the then unexplored reactivity of alkyl and aryl aluminium compounds with unsaturated systems as alternatives to alkyl lithium reagents. Two years later, the Eisch group moved to The University of Michigan in Ann Arbor, and it was around this time that Kaska and Eisch published the first bona fide example of sp2 C‒H metalation using triphenyl aluminium.

After graduating from Michigan in 1963, Bill studied organoboron and organoberyllium compounds as a post-doctoral scholar in the laboratory of Professor Thomas Wartik at Penn State University. He was hired only one year later as an assistant professor at the newly-formed University of California at Santa Barbara, in the fall of 1964.

Notable contributions

The training Bill had gained during his formative graduate and post-doctoral years set him on the path to become a die-hard synthetic organometallic chemist; the type that refuses to believe that any structure that can be imagined and scribbled on the back of an envelope cannot also be made and isolated…somehow.

In his early years in Santa Barbara, Bill presented the first example of an organometallic Wittig reaction, demonstrated by the reaction of MnBr(CO)5 with (Ph3P2)C to afford a Mn=C=C=PPh3 ylide. Bill and his group later used (Ph3P)2C to prepare several other examples of acetylenic organometallic complexes. Notably, in a 1974 collaborative paper with R. F. Reichelderfer, it was shown that treatment of (COD)IrPF6 with (Ph3P)2C resulted in the oxidative addition of an sp3 C‒H bond of the coordinated cyclooctadiene ligand directly to the metal centre. This was the first example of a C‒H bond insertion of a coordinated ligand by a transition metal; it was not until the following decade that elegant work by Crabtree and several others elevated the profile of this powerful reaction type.

The hexaphenylcarbodiphosphorane species (Ph3P)2C used in Bill’s early chemistry had been discovered a decade earlier by Ramirez. The compound itself was found to exhibit triboluminescence, the mechanism and origin of which was not well understood at the time. Large yellow crystals of (Ph3P)2C grown from diglyme were found to emit a bright yellow-green light when touched. In 1977, Bill published a paper in collaboration with Jeffrey Zink (UCLA) that presented a detailed spectroscopic analysis of (Ph3P)2C and other aromatic triboluminescent materials. The conclusions of this study suggested that light emission was caused by a combination of frictional electrification, piezoelectrification, and internal electrification at shear planes within individual crystals.

In the late 1970s, Bill and his group had gained an interest in the use of what would come to be known as pincer ligands for the formation of coordinatively unsaturated complexes with bulky groups around the metal atom, as a way to promote C−H metalation of hydrocarbons. In 1980, at the Biennial Inorganic Chemistry Symposium in Guelph, Canada, Bill presented the X-ray structure and reactivity of a 14-electron Rh(I) PCP-pincer complex. The dehalogenated Rh(I) centre readily formed adducts with both aromatic and aliphatic hydrocarbons. The subsequent publication of this work included Craig Jensen as a co-author (now on the faculty at the University of Hawaii), who was an undergraduate student in Bill’s group at that time. A number of additional reports of the reactivity of other pincer complexes were published by Bill’s group shortly after, and this body of work forms an integral part of the early history of pincer chemistry.

For the next two decades, Bill worked alongside other major researchers, notably including Alan Goldman (Rutgers) and Gerard van Koten (Utrecht University) to further advance the chemistry of pincer complexes, which continues to attract significant attention to this day. The utility of pincer catalysts continues to break new ground. In 2001, the Kaska group published a communication in collaboration with Michael Hall (Texas A&M University) and Matthias Haenel (Max-Planck Institute) showing how a PCP-Ir(I) complex constructed using an “anthraphos” (1,8-substituted anthracene) ligand led to a thermally stable catalyst for alkane dehydrogenation.

In the later phase of Bill’s career, he gained an interest in the synthesis of proton sponge materials and super bases, using fused N-heterocyclic ligands based on quino[7,8-h]quinolines. In collaborative work with his long-time colleague at UCSB, Galen Stucky, and Ferdi Schüth (Max-Planck Institute), the first examples of transition metal coordination complexes of these so-called proton sponges were reported in 2001. These complexes were unusually thermally and chemically stable, due to the unique conformational bending of the qunioline backbone.

Over the past five decades, the Kaska lab has produced many highlight results in a number of fields of molecular inorganic chemistry. The works contributed to this celebratory compilation build upon the legacy of Bill Kaska’s work, his teaching, and his friendships with others in the community.

Articles in this themed collection

While this narrative is intended to summarise just a few of the highlights of Bill’s research career, his former Ph.D. mentor John Eisch has authored a terrific editorial entitled, “Emergence of electrophilic alumination as the counterpart of established nucleophilic lithiation: an academic sojourn in organometallics with William Kaska as a fellow traveler,” which provides a comprehensive, personal account of their seminal work in organoaluminium chemistry.

Research in the arena of C‒H bond activation has continued to attract much interest. This interest is driven not only by a fundamental curiosity to discover new chemical reactivity, but also to solve important energy-related problems involving hydrocarbon activation, in drug development, and in a host of other homogeneously-catalysed processes. This is abundantly clear from the new work on display in this themed collection.

In close relation to some of the seminal work published by Bill and his co-workers on the reaction chemistry of Group 9 PCP-pincer complexes, this themed collection features new work by Professors Alan Goldman, Karsten Krogh-Jesperson (University of Rochester) and co-workers, who present an elegant combined experimental and theoretical study of the C‒H versus C‒C bond activation selectivity observed between a PCP-Ir catalyst and biphenylene. They describe how and why biphenylene tends to initially undergo C‒H oxidative addition to the PCP-Ir centre, but upon heating can undergo a rearrangement that results in C‒C activation to yield a less sterically-hindered, cyclometallated species.

A collaborative experimental and theoretical study of an unusual PCP-Ir system is reported by the groups of Professors Johannes Wielandt (Karl-Franzens University) and Hermann Mayer (University of Tuebingen). They employ a cycloheptatriene-based PCP ligand scaffold; cyclometallation of this ligand with Ir(CO)3Cl requires activation of an sp3 C‒H bond. Upon standing in tetrahydrofuran, the complex undergoes isomerisation via transfer of the remaining sp3-H onto the ligand backbone. This results in three new isomers, each containing a more common sp2-metalated arrangement at Ir, and a partially saturated ligand backbone. Continuing the theme of cyclometallated Ir-based complexes, Professors Roy Periana, Brian Hashiguchi and co-workers from the Scripps Research Institute describe the use of a robust NNC-Ir complex that is active for the oxidation of methane, benzene and other hydrocarbons in the presence of trifluoroacetic acid.

Professor Gerard van Koten and co-workers describe a series of new NCN-Pt pincer complexes that feature 4-(E)-[(4-R-phenyl)imino] methyl substituents, which induce important electronic effects on the Pt(II) sites. A combination of multinuclear NMR studies have been used to elucidate the electronically-tuneable behaviour of this unique family of Pt-pincer complexes. The group of Professor Paul Hayes at the University of Lethbridge describe how Y and Sm complexes of their bis(phosphinimie) carbazolate and pyrrolate NNN-pincers undergo varying patterns of ortho-metalation toward N– and P-aryl substituents accompanied by reductive elimination of silanes.

This collection also features a number of examples of complexes based on neutral pincer ligands that display a range of C‒H bond activation reactivities. Professor Dan Mindiola and his team at the University of Pennsylvania present a PNP-Ti pincer complex capable of performing catalytic dehydrogenation of cyclic and linear alkanes to cleanly yield the corresponding alkenes. They elucidate a mechanism for this surprising reactivity, which involves the formation of a Ti(III) alkylidyne intermediate that can effect a double C‒H bond activation. The group of Professor Karen Goldberg at the University of Washington present the synthesis, structures and reactivities of PtMe2 complexes of a bidentate P(X)N ligand (X = O, NH). The N-donor pyridyl substituent is sufficiently hemilabilile to allow for cyclometallation and reductive elimination of CH4. Professor Michael Rose and his team at the University of Texas at Austin present a family of Mn-carbonyl complexes prepared using novel neutral NNS Schiff base ligands, in which the thioether-S donors also exhibits hemilability.

C‒H activation by early transition metal complexes also features in this collection; Professors John Arnold and Robert Bergman from the University of California demonstrate the cyclometallation of a (BDI)Ta(=NtBu)Me2 complex, which undergoes reaction with H2 gas to provide a dihydride intermediate by sigma-bond metathesis. Interestingly, a low-valent Ta(III) species is also generated under certain conditions, which undergoes C‒N bond cleavage of the BDI ligand to give a new Ta(V) cyclometallated species. Meanwhile, Professor Gerhard Erker and co-workers report the reaction of B(C6F5)3 toward zirconacycloallenoids. They show how strongly Lewis basic B(C6F5)3 species undergo insertion into the Zr metallacycles to give unusual zwitterionic allenyl/borate complexes.

Professor Manuel Soriaga and co-workers from Texas A&M University and the California Institute of Technology provide an example of heterogeneous C‒H bond activation and metalation, performed on solid Pd electrode surfaces. In this interesting and extensive study, high-resolution surface-sensitive techniques are combined with DFT calculations to elucidate the mechanism of metalation of 2,3-dimethylhydroquinone on ordered Pd(111) and polycrystalline Pd electrode surfaces. It is shown that the orientation of the quinone (side-on, or flat) as it undergoes oxidative chemisorption to the Pd surfaces is directly related to the relative quinone concentration.

Professor Carl Redshaw and collaborators from the Universities of Hull, Loughborough and East Anglia present the use of a family of new mono-, di- and tri-nuclear Zn(II)-calixarene complexes for the ring-opening polymerization of lactones and lactides. The group of Professor Dominic Wright at the University of Cambridge (where Bill Kaska spent a sabbatical in 2004) present the synthesis and crystal structures of an extended family of new ML2 sandwich complexes (M = Ca(II), Mn(II), Fe(II)), using a tripodal NNN monoanionic donor ligand (L = tris(2-pyridyl)aluminate).

The themed collection is nicely concluded by work from the group of Professor Bruce Lipshutz – a long-time friend and colleague of Bill Kaska in the Department of Chemistry & Biochemistry at UC Santa Barbara – who report the Cu(OAc)2-catalysed hydrophosphination of styrenes. Notably, this powerful organic conversion has been achieved under green conditions using water as the solvent, at room temperature; the reaction proceeds in high yield for a broad range of aromatic substrates.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)