Archive for October, 2014

Bioprinting vascular networks for tissue-engineered organs

Ex vivo engineering of 3D organs for transplantation purposes has made tremendous strides in recent years, yet complex tissues remain challenging due to their need for vascularization. A new study takes great steps towards solving this issue using a new, simple bioprinting process to create branched vascular networks capable of effective media exchange. The introduced methodology provides a pathway towards successful incorporation of a branched vasculature into tissue-engineered organs.


In vitro study of directly bioprinted perfusable vasculature conduits

The concept of tissue engineering – combining cells with biomaterials to create living, functional tissues – to provide a solution to the lack of suitable organs for transplantation has been tremendously popular for several decades now, and for good reason. It harnesses the potential to not only tailor organ characteristics to individual patients and reduce transplant rejection risks, but also to virtually erase waiting time for patients in need. The combined efforts of numerous researchers have already led to great success in engineering simple tissues such as skin, yet the evolution towards engineering more complex tissues has proven to be highly challenging. A major roadblock has been, and continues to be, the need for nutrient delivery and media exchange for living tissues to survive, let alone thrive. The incorporation of a vascular network is required for this, yet current methods for creating these networks can either not generate efficient, perfusable systems with the necessary mechanical properties, or are too complex to effectively utilize in thick tissues.

To address the current challenges, Ibrahim Ozbolat’s research group at the University of Iowa designed a novel system for bioprinting vascular conduits. Bioprinting allows for precise 3D fabrication of cell constructs, usually using a sacrificial support biomaterial. In his study, Dr. Ozbolat’s system consists of a coaxial nozzle in which cell-loaded alginate is dispensed through the sheath, and a crosslinking calcium chloride solution through the core, to allow for instantaneous formation of hollow fiber conduits without the need for post-fabrication procedures. The nozzle is under precise robotic control, allowing fabrication of conduits of desired dimension and geometry.

In the current work, the applicability of the bioprinting unit is demonstrated using human umbilical vein smooth muscle cells (HUVSMCs) embedded in alginate as the vessel wall material. By varying alginate and calcium chloride concentrations, conduit properties could be controlled. Relevant properties reported here include vascular lumen and wall dimensions, burst pressures and wall permeability to allow nutrient diffusion. Especially the latter is of paramount importance for long-term functioning of complex engineered tissues. Importantly, this report also shows that despite significant loss of viability during the bioprinting process, alginate-encapsulated cell recovered completely and proliferated well, laying down extracellular matrix throughout the vessel wall as evidenced by histology. Perhaps most intriguing is the demonstrated formation of branched vascular conduits using Dr. Ozbolat’s system.

The straight-forward bioprinting system reported here, allowing for tight control of vascular conduit dimensions, mechanical and perfusion properties, represents a highly promising platform for incorporating effective media exchange and nutrient transport in 3D engineered tissues. Especially the unique lack of post-fabrication requirements and capability for printing branched vessels increase the applicability of this particular design.

In vitro study of directly bioprinted perfusable vasculature conduits
Yahui Zhang, Yin Yu, Adil Akkouch, Amer Dababneh, Farzaneh Dolati and Ibrahim T. Ozbolat

Biomater. Sci., 2015, Advance Article DOI: 10.1039/C4BM00234B


Biomaterials Science web writer Robert van LithRobert van Lith is currently a Post-Doc in the Biomedical Engineering department at Northwestern University, developing intrinsically antioxidant biomaterials. He recently received his Ph.D. from Northwestern University for his work on citrate-based antioxidant polyesters, receiving an American Heart Association Fellowship and Society for Biomaterials award for his work. He was trained in the Netherlands, holding an M.S. degree in Biomedical Engineering from Eindhoven University of Technology. Read more about Robert’s research publications here.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Issue 12 is now online

Biomaterials Science Issue 12 Issue 12 of Biomaterials Science is now available to read online.

View the issue here

On the cover:

Daniel E. Mitchell, Mary Lilliman, Sebastian G. Spain and Matthew I. Gibson

Antifreeze (glyco) proteins (AF(G)Ps) from the blood of polar fish species are extremely potent ice recrystallization inhibitors (IRI), but are difficult to synthesise or extract from natural sources. Here, poly(ampholytes), which contain a mixture of cationic and anionic side chains are quantitatively evaluated for their IRI activity.

Also featuring:

The development, characterization, and cellular response of a novel electroactive nanostructured composite for electrical stimulation of neural cells D. Depan and R. D. K. Misra

Combination of magnetic field and surface functionalization for reaching synergistic effects in cellular labeling by magnetic core–shell nanospheres Tina Gulin-Sarfraz, Jixi Zhang, Diti Desai, Jarmo Teuho, Jawad Sarfraz, Hua Jiang, Chunfu Zhang, Cecilia Sahlgren, Mika Lindén, Hongchen Gu and Jessica M. Rosenholm

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Themed collection for Michael Sefton’s 65th birthday

Nicholas Peppas (University of Texas) introduces our latest themed collection, put together in celebration of Michael Sefton’s 65th birthday.

I am delighted to express my thoughts on the occasion of this special collection in honor of Michael V. Sefton of the University of Toronto. Michael has been a friend for 44 years and has been a source of inspiration for several generations of biomaterials scientists, biomedical engineers, chemical engineers and polymer scientists.  He has been a leader in the fields of biomaterials, regenerative medicine and tissue engineering for the past 40 years.  Michael is recognized for seminal contributions to biomaterials science, regenerative medicine and tissue engineering, for development of novel methods for diabetes treatment and for visionary international leadership of the field of biomedical engineering.

Michael Sefton was born 65 years ago, on October 20, 1949, in London, United Kingdom. At a young age, the family left the UK and came to Canada where Michael, his brother and sister grew up in a loving family, always excelling. He entered the Chemical Engineering Department of the University of Toronto in 1967 and had the fortune to be educated by leading scientists in polymer science and artificial organs. This combination of the two areas led to his decision to pursue a graduate degree in chemical engineering, concentrating on biomaterials. So, we both arrived to the Massachusetts Institute of Technology (MIT) in August 1971 and we started working in the Chemical Engineering Department, he as a research assistant of Ken Smith, I as a volunteer in Ed Merrill’s laboratory. As all loyal students working on biomaterials those days did, we took courses such as 10.68 “Physical Chemistry of Polymers”, 10.64 “Structure and Properties of Polymers” and 10.69 “Polymerization Reactions”, along with 2.905 “Biomaterials” and the famous 10.56 “Chemical Engineering in Medicine”, the legendary course introduced to the curriculum 50 years ago by Ed Merrill and taught by his former PhD student (and our academic brother), the young Clark Colton.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Stem cell-materials interactions themed issue now online

Graphical abstract: Front coverWe hope you enjoy reading our latest themed issue on stem cell—materials interactions, Guest Edited by Matthias Lutolf (EPFL) and Jason Burdick (University of Pennsylvania).

Stem cells have an enormous potential in regenerative medicine and drug discovery but the development of stem cell based therapies and models in these fields has been slow. This is largely due to the difficulty of maintaining functional stem cells in a culture dish or controlling their directed differentiation. Naturally, stem cells reside in highly complex microenvironments (termed ‘niches’) that regulate their behavior.

This themed issue focuses on emerging efforts to engineer these niches to better control and probe stem cell fate in culture and in vivo, including the development of new biomaterials, the better understanding of stem cell and biomaterial interfaces, and the implementation of biomaterials and bioreactors together.

Take a look at these themed issue highlights:

Nanotopography – potential relevance in the stem cell niche Lesley-Anne Turner and Matthew J. Dalby

Biophysical regulation of hematopoietic stem cells C. Lee-Thedieck and J. P. Spatz

Stem cell culture using cell-derived substrates Binata Joddar, Takashi Hoshiba, Guoping Chen and Yoshihiro Ito

Chemically diverse polymer microarrays and high throughput surface characterisation: a method for discovery of materials for stem cell culture A. D. Celiz, J. G. W. Smith, A. K. Patel, R. Langer, D. G. Anderson, D. A. Barrett, L. E. Young, M. C. Davies, C. Denning and M. R. Alexander

Dual-stage growth factor release within 3D protein-engineered hydrogel niches promotes adipogenesis Midori Greenwood-Goodwin, Eric S. Teasley and Sarah C. Heilshorn

Artificial microniches for probing mesenchymal stem cell fate in 3DYujie Ma, Martin P. Neubauer, Julian Thiele, Andreas Fery and W. T. S. Huck

Download more articles here

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)