Archive for February, 2014

Zeolite–polymer composite adsorbs uremic toxins

Scientists in Japan have developed a nanofibre mesh that can adsorb creatinine from blood with the hope that it can eventually be developed into a wearable blood-cleaning device for patients with kidney failure.

It is hoped the mesh can eventually be developed into a wearable blood-cleaning device

It is hoped the mesh can eventually be developed into a wearable blood-cleaning device

Kidney failure causes dangerous concentrations of waste products, such as potassium, urea and creatinine, to build-up in the body. Apart from having a kidney transplant, the next best solution for patients is dialysis. Dialysis, however, is far from ideal. It is time-consuming and relies on access to specialist equipment, clean water, electricity, dialysate, and, usually, a hospital. Often these requirements aren’t accessible in rural parts of developing countries and disaster areas.

Read the full article at Chemistry World.

Fabrication of zeolite–polymer composite nanofibers for removal of uremic toxins from kidney failure patients
Mitsuhiro Ebara  
Biomater. Sci., 2014, Advance Article
DOI: 10.1039/C3BM60263J

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Mending a broken heart: Myocardial matrix hydrogels for cardiac tissue engineering

According to the World Health Organization, cardiovascular disease causes 17.3 million deaths worldwide, with projections reaching 23.3 million deaths by the year 2030. Unfortunately, heart attack patients still have limited therapeutic options, commonly relying on left ventricular assist devices (LVADs) and heart transplantation. To provide more modern therapies, physicians have turned to tissue engineers to develop biomaterials that enable local regeneration of the heart to restore function and ideally improve the quality of life for the patient.

Professor Karen Christman’s lab at the University of California – San Diego (UCSD) is exploring methods to fabricate injectable hydrogels for cardiac repair. In the present study, the lab has developed human myocardial matrix (HMM), and compared the material properties of HMM to previously fabricated porcine myocardial matrix (PMM). The materials are made directly from the decellularized extracellular matrix (ECM) from human and porcine hearts. The decellularized matrices are composed of the natural structural proteins found in the heart, which make the ideal environment needed to promote cardiac cell growth and maturation.

To produce HMM, seven human hearts with a patient age range of 41-69 years were decellularized using sodium dodecyl sulfate (SDS) and a series of lyophilization, milling, and digestion steps.  Due to the dramatic patient-to-patient variability between hearts, over 50% of the HMM solutions were not able to self-assemble into hydrogels at physiological conditions, unlike self-assembling PMM hydrogels. The irreproducibility of HMM hydrogel fabrication is likely due to differences in protein composition between HMM and PMM. Using mass spectrometry to identify the proteins present in the decellularized matrices, the authors showed that porcine and human hearts have inherent differences in their matrix composition.

Although HMM did not produce hydrogels reproducibly, the matrix was still useful for in vitro cell culture protocols. Using PMM and HMM as coatings for cell culture plates, increased proliferation of rat aortic smooth muscle cells (RASMCs) and human coronary artery endothelial cells (HCAECs) was observed on HMM coated plates compared to PMM coated plates. Additionally, cell cultured on both HMM and PMM matrices showed increased expression of early cardiac transcription factor markers in human fetal cardiomyocyte progenitor cells (hCMPCs). This result indicates that biochemical cues from the HMM and PMM proteins may enhance early stages of cardiomyocyte differentiation.

Even though HMM was shown to not be a likely candidate for clinical translation due to large variability between samples, PMM injectable hydrogels are still a promising alternative for improving cardiac repair in vivo. Additionally, HMM materials may be used for future in vitro cell culture and cardiomyocyte differentiation protocols.

Human versus porcine tissue sourcing for an injectable myocardial matrix hydrogel
Todd D. Johnson, Jessica A. DeQuach, Roberto Gaetani, Jessica Ungerleider, Dean Elhag, Vishal Nigam, Atta Behfar, and Karen L. Christman
Biomater. Sci., 2014, Advance Article, DOI: 10.1039/C3BM60283D

Brian Aguado is currently a Ph.D. Candidate and NSF Fellow in the Biomedical Engineering department at Northwestern University. He holds a B.S. degree in Biomechanical Engineering from Stanford University and a M.S. degree in Biomedical Engineering from Northwestern University. Read more about Brian’s research publications here.

To keep up-to-date with all the latest research, sign-up to our RSS feed or Table of contents

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Announcing new members of the Biomaterials Science Advisory Board

We are very pleased to introduce the new members of the Biomaterials Science Advisory Board:

Jianwu Dai is currently a Professor at the Intitute of Genetics and Developmental Biology at the Chinese Academy of Sciences. His research is focused on stem cells and regerative medicine.

Professor Dai obtained a B.Sc. in Cell Biology at Wuhan University, China, before completing an M.Sc. in Biophysics at Beijing Medical University. He received his Ph.D. from Duke University Medical Center (USA) in 1998, before joining Harvard Medical School as a Postdoctoral trainee, working on animal genetics and stem cells.


Ali Khademhosseini is an Associate Professor at Harvard-MIT Division of Health Sciences and Technology, Brigham and Women’s Hospital and Harvard Medical School as well as an Associate Faculty at the Wyss Institute for Biologically Inspired Engineering and a Junior PI at Japan’s World Premier International-Advanced Institute for Materials Research at Tohoku University where he directs a satellite laboratory. He has authored more than 300 papers and 50 book chapters.   He has engineered a range of hydrogels for tissue engineering and utilized various micro- and nanoengineering approaches to further modify the hydrogel properties / architecture.

Dr. Khademhosseini’s interdisciplinary research has been recognized by over 30 major national and international awards.  He has received early career awards from three major engineering discipline societies: electrical (IEEE Engineering in Medicine and Biology Society award and IEEE Nanotechnology award), chemical (Colburn award from the AIChE) and mechanical engineering (Y.C. Fung award from the ASME).  He is also a recipient of the Presidential Early Career Award for Scientists and Engineers, the highest honour given by the US government for early career investigators. He is a fellow of the American Institute of Medical and Biological Engineering (AIMBE) and the American Association for the Advancement of Science (AAAS).   He received his Ph.D. in bioengineering from MIT (2005), and MASc (2001) and BASc (1999) degrees from University of Toronto, both in chemical engineering.


Doo Sung Lee received his B.S. degree in Chemical Engineering from the Seoul National University in 1978 and his M.S. and Ph.D. in Chemical Engineering from the Korea Advanced Institute of Science and Technology (KAIST). Since 1984 he has been a Professor of  the School of Chemical Engineering at the Sungkyunkwan University, where he served as the Dean of the College of Engineering from 2005 to 2007.

Doo Sung Lee was elected as a member of the Korean Academy of Science and Technology in 2011 and was made a member of the National Academy of Engineering of Korea in 2012. He was a president of the Polymer Society of Korea in 2013. Since 2010, he has been a director of Theranostic Macromolecules Research Center funded by National Research Foundation of Korea  His research group studies on the development of functionalized & biodegradable injectable hydrogels and micelles for controlled drug and protein delivery and molecular imaging.


Suzie H. Pun received her Chemical Engineering Ph.D. degree in 2000 from the California Institute of Technology.  She then worked as a senior scientist at Insert Therapeutics for 3 years before joining the Department of Bioengineering at University of Washington (UW).  She is currently the Robert J Rushmer Associate Professor of Bioengineering, an Adjunct Associate Professor of Chemical Engineering, and a member of the Molecular Engineering and Sciences Institute at UW.  Her research focus area is in drug and gene delivery systems and she has published over 75 research articles in this area.  For this work, she was recognized with a Presidential Early Career Award for Scientists and Engineers in 2006.


Xintao Shuai received his Ph. D. degree in 1996 from Beijing Institute of Technology (China). After working for some years as a visiting scholar or postdoc at North Carolina State University, Philipps-University Marburg and Case Western Reserve University, he joined Sun Yat-sen University, China in 2005 as a professor of polymer science in the School of Chemistry and Chemical Engineering and professor by courtesy of biomedical engineering in the School of Medicine. Dr. Shuai’s research interests include polymeric nano-biomaterials for drug delivery and MRI-visible theranostic systems for disease diagnosis and treatment. He has published over 80 peer reviewed journal articles.


Joyce Wong is a Professor in Biomedical Engineering and Materials Science & Engineering at Boston University. She directs the Biomimetic Materials Engineering Laboratory which is focused on developing biomaterial systems that mimic physiological and pathophysiological environments to study fundamental cellular processes at the biointerface. Current research includes vascular tissue engineering, theranostics, and engineering biomimetic systems to study restenosis and cancer metastasis.


We are delighted to welcome these six distinguished scientists to the Biomaterials Science team. For a full list of Biomaterials Science Editorial and Advisory board members, please see the website.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)