Archive for the ‘News’ Category

Tiny islands set sperm spinning

A platform for simultaneously screening thousands of sperm cells could lead to more efficient identification of high performing sperm for fertility treatments.

Protein islands trap individual sperm cells for motility analysis

 Assisted reproductive technologies have revolutionised the fertility world, however, sperm must be carefully picked on the basis of specific characteristics, including motility, to increase the chance of a successful pregnancy. However, more than half of the sperm selected for intra-cytoplasmic sperm injection (ICSI) using current procedures are damaged.

To read the full article, please go to Chemistry World.

Make it Spin: Individual Trapping of Sperm for Analysis and Recovery Using Micro-Contact Printing
Jean-Philippe Frimat, Mathijs Bronkhorst, Bjorn de Wagenaar, Johan Bomer, Ferdi van der Heijden, Albert van den Berg and Loes Segerink  
Lab Chip, 2014, Accepted Manuscript
DOI: 10.1039/C4LC00050A, Paper

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Technologies Competition 2014

The Royal Society of Chemistry is holding a competition to identify the latest technologies in chemical sciences which have significant potential impact on the UK economy.

The winner will receive one to one mentoring from renowned multinational companies and up to a £10,000 cash prize.

If you have an emerging technology that could be the next big chemical science revolution, submit your application by 1 March 2014!

Follow the link to find out more: http://rsc.li/LGCAwM


Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Art In Science Award – the contenders

Every year, Lab on a Chip sponsors the Art in Science award, titled: “Under the Looking Glass: Art from the World of Small Science”. This award, presented at the annual microfluidics conference MicroTas, aims to draw attention to the aesthetic value in scientific illustrations while still conveying scientific merit.

In 2013, the submissions were as fantastic as ever, so we must say a big well done to all of our contributors!

Have a look below at 2013’s winner, and other highly commended pieces…


The Winner: “Artificial Life” by Ye Wang, Eindhoven University of Technology.


An SEM image of artificial cilia (microhairs) made with Polydimethylsiloxane and magnetic nanoparticles using a glass mold made by femtolaser modification and hydrofluoric acid etching.


Highly Commended: “Trapping Trapping” by Satoru Ito, Nagoya University.

Fabricated ZnO nanowire (100 nm in diameter and 2-3 micrometer in length) trapping 100 nm beads by electrostatic interaction.


Highly Commended: “Nanoforest” by Sakon Rahong, Osaka University.

A colorised SEM micrograph showing Christmas-tree nano wires prepared by Vapour Liquid Solid (VLS) growth embedded in microchannel for fast DNA separation.


Highly Commended: “Van Gogh’s Wall Paper” by You-Ren Hsu, Institute of NanoEngineering and MicroSystems, NTHU.

Salt crystallization on a gold coated photonic crystal substrate. The salt crystallization changed the index of refraction on the surface, making the color tone.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

MicroTas abstracts are now online!

Lab on a Chip presents uTAS Abstracts 2003 to Present:

The page link below gives the lab on a chip/microfluidics/uTAS communities FREE ACCESS to both current and archived content submitted to the uTAS conferences in the form of extended abstracts. It is hoped that this service will support workers in finding essential references and hence increase knowledge of past work in the field and assist with current and future research.

This archive includes abstracts presented at uTAS meetings from 2003 to present and essentially provides easy web access to the abstract discs supplied at the uTAS meetings.


CLICK HERE for abstracts! http://rsc.li/1eYWXQs

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Device runs on finger power

Researchers in the US have demonstrated that mechanical energy from a human hand can power a microfluidic device.

The behaviour of liquids on a charged dielectric surface can be controlled by passing a current through that surface, known as the electrowetting on dielectric phenomenon (EWOD). In digital microfluidic devices, individual droplets containing samples or reagents are manipulated, allowing the controlled movement and mixing of reagents in different droplets. However, the need for a bulky external high-voltage power supply currently limits the potential application in biomedical devices and optics.

Movement creates piezoelectric potentials for manipulating droplets in the microfluidic system

 To read the full article please visit Chemistry World.

EWOD (Electrowetting on Dielectric) Digital Microfluidics Powered by Finger Actuation
Cheng Peng, Zhongning Zhang, Chang-Jin Kim and Y. Sungtaek Ju  
Lab Chip, 2013, Accepted Manuscript
DOI: 10.1039/C3LC51223A, Paper

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Seasons Greetings from Lab on a Chip!

The holidays are nearly here!!

We know everyone’s been working hard to finish off semesters and write up those papers. Here in Cambridge we’ve been working hard too, planning for the New Year and wrapping up 2013.

To spread the holiday cheer, we’ve chosen three highly accessed papers and made them *FREE TO ACCESS* for the next four weeks. Enjoy!

Merry Christmas from the LOC team!




Paper: Albumin testing in uring using a smartphone, by Aydogan Ozcan, UCLA

Critical Review: Paper-based microfluidic point-of-care diagnostic devices, by Ali Kemal Yetisen, Cambridge

Paper: Cholesterol testing on a smartphone, by David Erickson, Cornell




Access is free through a registered RSC account – click here to register

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Altmetrics now featured on Lab on a Chip

 We are pleased to announce the inclusion of Altmetrics on Lab on a Chip.

With a constantly changing publishing landscape and changes to the way people use scientific literature, altmetrics is a measure that can monitor the level of conversation and interest in a particular piece of research at the article level. Thus altmetrics provides an additional modern metric for our authors to measure the impact of their work, rather than rely solely on citations and impact factor.

To view altmetrics on Lab on a Chip articles, use the Metrics tab as pictured below on the article landing page.

 Altmetrics for LOC 

A press release from Altmetrics is available on our website.

What do you think? We are interested to hear your feedback on this new development and how you are utilising these new types of metrics. Please leave your comments below.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Reprogrammable microfluidic chips

A microfluidic chip with channels that can be programmed then reset and reconfigured has been developed by scientists from France and Japan.

Water is dispensed into chip reservoirs. By selectively switching on electrodes, water is manipulated to carve out the channels

Water is dispensed into chip reservoirs. By selectively switching on electrodes, water is manipulated to carve out the channels

In recent years, scientists from across of the globe have developed a plethora of microfluidic chips to perform a variety of tasks, from PCR to cell sorting. However, a serious drawback of microfluidic technologies is that each application requires a unique arrangement of inlets, outlets and microchannels, so microfluidic chips are usually specific to one particular purpose. This, combined with the time-consuming and costly manufacturing processes required to construct microfluidic devices, makes the idea of a reprogrammable chip very attractive.

Read the full article here at Chemistry World.

Programmable and reconfigurable microfluidic chip
Raphaël Renaudot, et al.
Lab Chip, 2013, Accepted Manuscript
DOI: 10.1039/C3LC50850A, Paper

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Lab on a Chip Co-hosts EU-Korea Microfluidics Workshop

We are very pleased to announce that Lab on a Chip will once again Co-host the third EU-Korea Workshop on microfluidics, focusing on “Emerging Microfluidic Platform Technologies: From Biosciences to Applications”.

Please come along and see us at the meeting, which will be held in Postech International Centre, Pohang, Korea. The workshop takes place on October 3rd to 5th, 2013.

Meet the Editor and International speakers:

Jean-Louis Viovy, Institute Curie, France
Andreas Manz, KIST, Europe
Dongpyo Kim, Pohang, Koreas
Chris Abell, Cambridge, UK
Noo Li Jeon, Seoul, Korea
Sabeth Verpoorte, Groningen, Netherlands
Hywel Morgan, Southampton, UK
Petra Dittrich, ETH Zurich, Switzerland
Sanghyun Lee, FEMTOLAB, Korea
Samuel Sanchez, Max-Planck, Germany
Yoon Kyoung Cho, UNIST, Korea
Francois Leblanc, CEO Fluigent

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Free to access HOT articles!

These HOT articles have been recommended by our referees and are free to access for 4 weeks*

Multiplexed single molecule immunoassays
David M. Rissin, Cheuk W. Kan, Linan Song, Andrew J. Rivnak, Matthew W. Fishburn, Qichao Shao, Tomasz Piech, Evan P. Ferrell, Raymond E. Meyer, Todd G. Campbell, David R. Fournier and David C. Duffy  
DOI: 10.1039/C3LC50416F

GA

Rapid fabrication of pressure-driven open-channel microfluidic devices in omniphobic RF paper
Ana C. Glavan, Ramses V. Martinez, E. Jane Maxwell, Anand Bala Subramaniam, Rui M. D. Nunes, Siowling Soh and George M. Whitesides  
DOI: 10.1039/C3LC50371B

GA

A simple three-dimensional-focusing, continuous-flow mixer for the study of fast protein dynamics
Kelly S. Burke, Dzmitry Parul, Michael J. Reddish and R. Brian Dyer
DOI: 10.1039/C3LC50497B

GA

Assessment of pathogenic bacteria using periodic actuation
Sorin David, Cristina Polonschii, Mihaela Gheorghiu, Dumitru Bratu, Alin Dobre and Eugen Gheorghiu  
DOI: 10.1039/C3LC50411E

GA

Microfluidic heart on a chip for higher throughput pharmacological studies
Ashutosh Agarwal, Josue Adrian Goss, Alexander Cho, Megan Laura McCain and Kevin Kit Parker 
DOI: 10.1039/C3LC50350J

GA

Low-cost fabrication of centimetre-scale periodic arrays of single plasmid DNA molecules
Brett Kirkland, Zhibin Wang, Peipei Zhang, Shin-ichiro Takebayashi, Steven Lenhert, David M. Gilbert and Jingjiao Guan   
DOI: 10.1039/C3LC50562F

GA

A novel microfluidic technology for the preparation of gas-in-oil-in-water emulsions
Lu Yang, Kai Wang, Sy Mak, Yankai Li and Guangsheng Luo  
DOI: 10.1039/C3LC50652E

GA

A microfluidic approach for protein structure determination at room temperature via on-chip anomalous diffraction
Sarah L. Perry, Sudipto Guha, Ashtamurthy S. Pawate, Amrit Bhaskarla, Vinayak Agarwal, Satish K. Nair and Paul J. A. Kenis
DOI: 10.1039/C3LC50276G

GA

Steam-on-a-chip for oil recovery: the role of alkaline additives in steam assisted gravity drainage
Thomas W. de Haas, Hossein Fadaei, Uriel Guerrero and David Sinton  
DOI: 10.1039/C3LC50612F

GA

Out of the cleanroom, self-assembled magnetic artificial cilia
Ye Wang, Yang Gao, Hans Wyss, Patrick Anderson and Jaap den Toonder 
DOI: 10.1039/C3LC50458A

GA

Flow switching in microfluidic networks using passive features and frequency tuning
Rachel R. Collino, Neil Reilly-Shapiro, Bryant Foresman, Kerui Xu, Marcel Utz, James P. Landers and Matthew R. Begley  
DOI: 10.1039/C3LC50481F

GA

Single vesicle biochips for ultra-miniaturized nanoscale fluidics and single molecule bioscience
Andreas L. Christensen, Christina Lohr, Sune M. Christensen and Dimitrios Stamou  
DOI: 10.1039/C3LC50492A

GA

Pinched-flow hydrodynamic stretching of single-cells
Jaideep S. Dudani, Daniel R. Gossett, Henry T. K. Tse and Dino Di Carlo  
DOI: 10.1039/C3LC50649E

GA

An acoustofluidic micromixer based on oscillating sidewall sharp-edges
Po-Hsun Huang, Yuliang Xie, Daniel Ahmed, Joseph Rufo, Nitesh Nama, Yuchao Chen, Chung Yu Chan and Tony Jun Huang  
DOI: 10.1039/C3LC50568E

GA

Thermal migration of molecular lipid films as a contactless fabrication strategy for lipid nanotube networks
Irep Gözen, Mehrnaz Shaali, Alar Ainla, Bahanur Örtmen, Inga Põldsalu, Kiryl Kustanovich, Gavin D. M. Jeffries, Zoran Konkoli, Paul Dommersnes and Aldo Jesorka  
DOI: 10.1039/C3LC50391G

GA

On-chip microbial culture for the specific detection of very low levels of bacteria
Sihem Bouguelia, Yoann Roupioz, Sami Slimani, Laure Mondani, Maria G. Casabona, Claire Durmort, Thierry Vernet, Roberto Calemczuk and Thierry Livache
DOI: 10.1039/C3LC50473E

GA

Gas/liquid sensing via chemotaxis of Euglena cells confined in an isolated micro-aquarium
Kazunari Ozasa, Jeesoo Lee, Simon Song, Masahiko Hara and Mizuo Maeda
DOI: 10.1039/C3LC50696G

GA

Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array
Isa Navruz, Ahmet F. Coskun, Justin Wong, Saqib Mohammad, Derek Tseng, Richie Nagi, Stephen Phillips and Aydogan Ozcan
DOI: 10.1039/C3LC50589H

GA

Protein–DNA force assay in a microfluidic format
Marcus Otten, Philip Wolf and Hermann E. Gaub  
DOI: 10.1039/C3LC50830G

GA

Ultrasensitive microfluidic solid-phase ELISA using an actuatable microwell-patterned PDMS chip
Tanyu Wang, Mohan Zhang, Dakota D. Dreher and Yong Zeng  
DOI: 10.1039/C3LC50783A

GA

Detection of real-time dynamics of drug–target interactions by ultralong nanowalls
Andreas Menzel, Raphael J. Gübeli, Firat Güder, Wilfried Weber and Margit Zacharias  
DOI: 10.1039/C3LC50694K

GA

Capillarics: pre-programmed, self-powered microfluidic circuits built from capillary elements
Roozbeh Safavieh and David Juncker  
DOI: 10.1039/C3LC50691F

GA

A portable explosive detector based on fluorescence quenching of pyrene deposited on coloured wax-printed μPADs
Regina Verena Taudte, Alison Beavis, Linzi Wilson-Wilde, Claude Roux, Philip Doble and Lucas Blanes  
DOI: 10.1039/C3LC50609F

GA

Electrokinetic tweezing: three-dimensional manipulation of microparticles by real-time imaging and flow control
Zachary Cummins, Roland Probst and Benjamin Shapiro
DOI: 10.1039/C3LC50674F

GA

Albumin testing in urine using a smart-phone
Ahmet F. Coskun, Richie Nagi, Kayvon Sadeghi, Stephen Phillips and Aydogan Ozcan 
DOI: 10.1039/C3LC50785H

GA

*Free access to individuals is provided through an RSC Publishing personal account. It’s quick, simple and more importantly – free – to register!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)