Pioneers of Miniaturization Lectureship 2016

Lab on a Chip and Corning Incorporated are proud to sponsor the eleventh Pioneers of Miniaturization Lectureship, to honour and support the up and coming, next generation of scientists who have significantly contributed to the understanding or development of miniaturised systems. This year’s Lectureship will be presented at the µTAS 2016 Conference in Dublin, Ireland, with the recipient receiving a prize of US$5,000.

Who should you nominate?

Early to mid-career scientists (maximum 15 years post completion of PhD).

Scientists who have demonstrated extraordinary contributions to the understanding or development of miniaturised systems.

How do you nominate?

Submit your nominations to Lab on a Chip Editor Sarah Ruthven at LOC-RSC@rsc.org

Nominations should include:

  • Full contact and affiliation details of the person making the nomination.
  • A letter of nomination with the candidate’s accomplishments and why the lectureship is deserved. (The nominee must be aware that he/she has been nominated for this lectureship.)
  • A list of the candidate’s relevant publications or recent work (all work should be original).
  • Candidate’s scientific CV stating PhD completion date; address; and full contact details.

Nomination Deadline: 1 June 2016

Who has won the Pioneers of Miniaturisation Lectureship in the past?

  • 2015: Professor Dino Di Carlo, University of California, Los Angeles, USA
  • 2014: Professor Sangeeta N. Bhatia, Massachusetts Institute of Techology, USA
  • 2013: Professor Shuichi Takayama, University of Michigan, USA
  • 2012: Professor Andrew deMello, ETH Zürich, Switzerland
  • 2011: Professor Ali Khademhosseini, Massachusetts Institute of Technology, USA
  • 2010: Professor Stephen Quake, Stanford University, USA
  • 2009: Professor Abe Lee, University of California, Irvine, USA
  • 2008: Dr Patrick Doyle, Massachusetts Institute of Technology, USA
  • 2007: Dr Manabu Tokeshi, Nagoya University, Japan
  • 2006: Dr David Beebe, University of Wisconsin, USA

Terms and Conditions

The Lectureship consists of the following elements:

  • A prize of US$5,000. No other financial contribution will be offered
  • A certificate recognising the winner of the lectureship
  • The awardee is required to give a short lecture at the 2016 µTAS Conference

The award is for early to mid-career scientists (maximum 15 years post completion of PhD).

The award is for extraordinary or outstanding contributions to the understanding or development of miniaturised systems. This will be judged mainly through their top 1-3 papers and/or an invention documented by patents/or a commercial product. Awards and honorary memberships may also be considered.

The winner will be expected to submit at least two significant publications to Lab on a Chip in the 12 months after the lectureship is awarded.

Nominations from students and self-nominations are not permissible.

The decision on the winner of the lectureship will be made by a panel of judges, and this decision will be final.

Sponsors

Corning Incorporated
Corning (www.corning.com) is one of the world’s leading innovators in materials science. For more than 160 years, Corning has applied its unparalleled expertise in specialty glass, ceramics, and optical physics to develop products that have created new industries and transformed people’s lives. Corning succeeds through sustained investment in R&D, a unique combination of material and process innovation, and close collaboration with customers to solve tough technology challenges. Corning’s businesses and markets are constantly evolving. Today, Corning’s products enable diverse industries such as consumer electronics, telecommunications, transportation, and life sciences. They include damage-resistant cover glass for smartphones and tablets; precision glass for advanced displays; optical fiber, wireless technologies, and connectivity solutions for high-speed communications networks; trusted products that accelerate drug discovery and manufacturing; and emissions-control products for cars, trucks, and off-road vehicles.

Lab on a Chip
The leading journal for miniaturization at the micro and nanoscale. Lab on a Chip supports research and development of miniaturization technologies and promotes interdisciplinary co-operation across all fields of science. The Journal also provides readers with a more fundamental understanding of miniaturization and related processes as well as the necessary tools for practical application of methods and devices.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

One big step towards building “body-on-a-chip”

an article by Burcu Gumuscu, PhD researcher at University of Twente

It takes about 14 years and 2 billion dollars to bring a successful drug from laboratory to clinic. A large portion of this time period includes in vitro culture tests, animal tests, and clinical trials. The overall success rate of a new drug molecule making it through this entire process is only around 10%. To improve this situation, there has been a tremendous amount of work in recent years on developing in vitro organ-on-chip models. Many organ-on-chip platforms (including heart, lung, kidney, liver, and intestine) have shown to mimic organ functions on the microscale, offering the possibility to eliminate animal testing, shorten long development times, and reduce costs. More importantly, such platforms can offer personalized medicine, enabling drug molecules to be tested directly on individual patient cells without adverse side-effects or harm.

Figure 1. The concept of elastomeric endothelialized blood vessels for interconnecting multiple organs on chip systems (liver, heart, and lung modules as illustrated).

Although existing organ-on-chip models have been shown to function well individually, integrating all models into a single fluidic circuitry (or “body-on-a-chip”) remains a necessary goal to recapitulate multi-physiological functions (Figure 1). Passive tube connections and chip-based vessels have thus far been utilized for this purpose. However, bulky dead volumes created in connections, and unbalanced scaling of the volumes between organ models and chip-based vessels, seem counterintuitive to the miniaturized nature of microscale platforms. These methods may also result in miscommunication between the organ models due to the dilution of the signal molecules secreted by the cells.

This fundamental problem has recently been addressed in a practical way by Khademhosseini and co-workers, who are the first to develop polydimethylsiloxane (PDMS) hollow tubes in a range of different sizes and wall thicknesses which mimic the physio-anatomical properties of blood vessels. The fabrication of the PDMS tubes was enabled by two different strategies, including both hard and soft templating (Figure 2a). After fabrication, the tube’s interior surface was coated with human umbilical vein endothelial cells (HUVEC) to introduce biological functions (Figure 2b). The biofunctionality of the elastomeric blood vessels was demonstrated by the expression of an endothelial biomarker and dose-dependent responses in the secretion of von Willebrand factor. The endothelialized PDMS tubes were also utilized for assessing a panel of drugs, including the anti-cancer drug doxorubicin, immunosuppressive drug rapamycin, and vasodilator medication minoxidil, as well as amiodarone, acetaminophen, and histamine (Figure 2c). Functional elastomeric blood vessels can be fabricated up to 20 cm in length, which is sufficient for interconnecting the organ-on-chip models. Moreover, tailorable wall thicknesses enable the opportunity to study various disease models, such as the effect of diabetes or hyperlipidemia on blood vessels. The elastomeric blood vessels are expected to replace the current technologies in assembling human organ-on-chip models.

Figure 2. (a) The elastomeric PDMS blood vessels fabricated using hard and soft templating. (b) A blood vessel template with 0.28 mm diameter is used to culture HUVEC. F-actin (green) and DAPI (blue) staining are performed to visualize the cytoskeletons and the nuclei of the cells. Scale bars are 200 μm. (c) The cell growth in the templates are further shown by live (green) and dead (red) staining under application of several drugs, including Doxorubicin (anti-cancer drug) and Minoxidil (a vasodilator usually used for treatment of severe hypertension). Scale bars are 50 μm.

To download the full article for free* click the link below:

Elastomeric free-form blood vessels for interconnecting organs on chip systems
Weijia Zhang, Yu Shrike Zhang, Syeda Mahwish Bakht, Julio Aleman, Kan Yue, Su-Ryon Shin, Marco Sica, João Ribas, Margaux Duchamp, Jie Ju, Ramin Banan Sadeghian, Duckjin Kim, Mehmet Remzi Dokmeci, Anthony Atala, and Ali Khademhosseini
Lab Chip
, 2016, 16, 1579-1586
DOI: 10.1039/C6LC00001K, Advance Article

—————-

About the webwriter

Burcu Gumuscu is a PhD researcher in BIOS Lab on a Chip Group at University of Twente in The Netherlands. Her research interests include development of microfluidic devices for second generation sequencing, organ-on-chip development, and desalination of water on the micron-scale.

—————-

*Access is free until 17/06/2016 through a registered RSC account.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New YouTube Videos

Human induced pluripotent stem cell-derived fiber-shaped cardiac tissue on a chip

Mini-pillar array for hydrogel-supported 3D culture and high-content histologic analysis of human tumor spheroids

A centrifugal direct recombinase polymerase amplification (direct- RPA) microdevice for multiplex and real-time identification of food poisoning bacteria

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Pioneers of Miniaturization Lectureship 2016 – nomination deadline approaching!

Lab on a Chip and Corning Incorporated are proud to sponsor the eleventh Pioneers of Miniaturization Lectureship, to honour and support the up and coming, next generation of scientists who have significantly contributed to the understanding or development of miniaturised systems. This year’s Lectureship will be presented at the µTAS 2016 Conference in Dublin, Ireland, with the recipient receiving a prize of US$5,000.

Deadline for nominations is 1 June 2016

Submit your nominations to Lab on a Chip Editor Sarah Ruthven at LOC-RSC@rsc.org


Nominations should include:

  • Full contact and affiliation details of the person making the nomination.
  • A letter of nomination with the candidate’s accomplishments and why the lectureship is deserved. (The nominee must be aware that he/she has been nominated for this lectureship.)
  • A list of the candidate’s relevant publications or recent work (all work should be original).
  • Candidate’s scientific CV stating PhD completion date; address; and full contact details.

Who should you nominate?

Early to mid-career scientists (maximum 15 years post completion of PhD).

Scientists who have demonstrated extraordinary contributions to the understanding or development of miniaturised systems.

Terms and Conditions

The Lectureship consists of the following elements:

  • A prize of US$5,000. No other financial contribution will be offered
  • A certificate recognising the winner of the lectureship
  • The awardee is required to give a short lecture at the 2016 µTAS Conference

The award is for early to mid-career scientists (maximum 15 years post completion of PhD).

The award is for extraordinary or outstanding contributions to the understanding or development of miniaturised systems. This will be judged mainly through their top 1-3 papers and/or an invention documented by patents/or a commercial product. Awards and honorary memberships may also be considered.

The winner will be expected to submit at least two significant publications to Lab on a Chip in the 12 months after the lectureship is awarded.

Nominations from students and self-nominations are not permissible.

The decision on the winner of the lectureship will be made by a panel of judges, and this decision will be final.

Sponsors

Corning Incorporated
Corning (www.corning.com) is one of the world’s leading innovators in materials science. For more than 160 years, Corning has applied its unparalleled expertise in specialty glass, ceramics, and optical physics to develop products that have created new industries and transformed people’s lives. Corning succeeds through sustained investment in R&D, a unique combination of material and process innovation, and close collaboration with customers to solve tough technology challenges. Corning’s businesses and markets are constantly evolving. Today, Corning’s products enable diverse industries such as consumer electronics, telecommunications, transportation, and life sciences. They include damage-resistant cover glass for smartphones and tablets; precision glass for advanced displays; optical fiber, wireless technologies, and connectivity solutions for high-speed communications networks; trusted products that accelerate drug discovery and manufacturing; and emissions-control products for cars, trucks, and off-road vehicles.

Lab on a Chip
The leading journal for miniaturization at the micro and nanoscale. Lab on a Chip supports research and development of miniaturization technologies and promotes interdisciplinary co-operation across all fields of science. The Journal also provides readers with a more fundamental understanding of miniaturization and related processes as well as the necessary tools for practical application of methods and devices.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New YouTube Videos

Evaluating 3D printing to solve the sample-to-device interface for LRS and POC diagnostics: example of an interlock meter-mix device for metering and lysing clinical urine samples

AC electric field induced droplet deformation in a microfluidic T-junction

Microfluidic Paper-based Biomolecule Preconcentrator Based on Ion Concentration Polarization

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

MSB 2016 poster prize winner

The 32nd International Symposium on Microscale Separations and Bioanalysis was held at Queen’s Landing in Niagara-on-the-Lake, Canada from April 3-7, 2016. This symposium has been running since 1989 and was originally founded by Professor Barry Karger (Northeastern University). Over the years the format of MSB 2016 has evolved into an interactive forum for the discussion of cutting-edge research on the frontiers of separation science.

Several awards were on offer at MSB 2016, but we are happy to announce that the Lab on a Chip poster prize was won by Nicolas Drouin of the University of Genevea, Switzerland. He is pictured (above) receiving his prize from Philip Britz-McKibbin of McMaster University (Conference Chair) and Karen Waldron of Université de Montréal (Conference Co-organizer). Congratulations Nicolas!

More information on the symposium can be found here.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

2016 MicroTAS Video Competition

Lab on a Chip is proud to announce the third μTAS Video Competition, in partnership with Dolomite Microfluidics and supported by μTAS and Chemical and Biological Microsystems Society (CBMS).

We invite registered μTAS partipants to submit short videos (see terms and conditions below) that are either scientifically or educationally focused. Videos may be fun, artistic or just surprising and unusual in order to meet these criteria.

Dolomite Microfluidics, innovators in microfluidic solutions, are sponsoring this competition with the prize of €2500 worth of Dolomite equipment.

If you have an idea for a video that you would like to share with the μTAS community read the entry conditions below!

Deadline: 10 October 2016

Terms and Conditions

  • Only participants registered for the MicroTAS conference can take part and submit videos.
  • Videos must be either scientific (demonstrating interesting aspects) or educational (enhancing understanding) with respect to micro- or nanofluidics.
  • Videos can be enhanced by audio, animations, or annotations.
  • Videos should be no longer than 2 minutes with a file size less than 25 Mbytes (please use appropriate video compression).
  • Videos must be viewable on a PC without special software (.mpg, .mp4, .mov, .avi or .wmv).
  • All videos are submitted on the basis that they may be used by LOC and/or CBMS for promotional purposes in any form.
  • Assessment by an international panel of judges will take place at MicroTAS 2016 and the judges’ decision will be final
  • The prize will be awarded at MicroTAS 2016, and a voucher for the equipment will be presented to the person submitting the winning entry.
  • The video submission deadline is the end of Monday, 10th October, 2016 (Honolulu, Hawaii, USA time).

Video Award Submission Process – Easy 3 Step Process

Step 1. Sign-In to the Electronic Form using your Registration Number

Please have your Registration Number accessible. If you are unable to locate your Registration Number, please contact info@microtas2016.org.

Step 2. Fill in information on Electronic Submission Form

Step 3. Upload Your Video

All entries are to be submitted online via this website as .mpg, .mp4, .mov, .avi or .wmv. Once your entry has been successfully  uploaded and submitted, you will be given an entry number and you will be sent a confirmation email with the information your provided, minus the video. The ability to submit a video will close at the end of Monday, 10 October 2016 (Honolulu, Hawaii, USA time).

Good luck!

Previous winners:

MicroTAS 2015 Conference, Gyeongju, Korea
Spin Me Right Round

David Kinahan, Ducrée Labs, Dublin City University, Ireland

MicroTAS 2014 Conference, San Antonio, Texas, USA
Magnetotactic Bacteria
Tijmen Hageman, KIST Europe GmbH, Germany

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New YouTube Videos

On-chip analysis, indexing and screening for chemical producing bacteria in microfluidic static droplet array

Implantable Tissue Isolation Chambers for Analyzing Tumor Dynamics In Vivo

Chemotaxis-driven assembly of endothelial barrier in a tumor-on-a-chip platform

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

2016 Art in Science Competition

Get your entries in before the deadline on 9th October 2016

The µTAS 2016 Conference will feature the ninth Art in Science competition entitled ‘Under the Looking Glass: Art from the World of Small Science‘, sponsored and supported by National Institute of Standards and Technology, Lab on a Chip, MicroTAS and the Chemical and Biological Microsystems Society.

Deadline 10th October 2016 at 23:59 Honolulu, Hawaii, USA time

Since the earliest publications of the scientific world, the aesthetic value of scientific illustrations and images has been critical to many researchers. The illustrations and diagrams of earlier scientists such as Galileo and Da Vinci have become iconic symbols of science and the scientific thought process.

In current scientific literature, many scientists consider the selection of a publication as a “cover article” in a prestigious journal to be very complimentary.

Are you attending the µTAS 2016 Conference?
Would you like your image to be featured on the cover of Lab on a Chip?
Would you like to win a financial reward?

To draw attention to the aesthetic value in scientific illustration while still conveying scientific merit, NIST, LOC and CBMS are sponsoring this annual competition. Applications are encouraged from authors in attendance of the µTAS Conference and the winner will be selected by a panel of judges.

Applications must show a photograph, micrograph or other accurate representation of a system that would be of interest to the µTAS community and be represented in the final manuscript or presentation given at the Conference.

They must also contain a brief caption that describes the illustration’s content and its scientific merit. The winner will be selected on the basis of aesthetic eye appeal, artistic allure and scientific merit. In addition to having the image featured on the cover of Lab on a Chip, the winner will also receive a financial prize at the Conference.

Art in Science Competition Submission Process

Step 1. Sign-In to the Electronic Form Using Your Abstract/Manuscript Number

Step 2. Fill in Remaining Information on Electronic Submission Form

Step 3. Upload Your Image

Good Luck!

You can also take a look at the winners from last year on our blog.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Comparison of colorimetric methods for paper-based immunoassays

an article by Claire Weston, PhD student at Imperial College London

Shefali Lathwal and Hadley Sikes at Massachusetts Institute of Technology have carried out an in-depth study published in Lab on a Chip comparing different colorimetric paper-based immunoassays (where a positive or negative result is shown by the appearance or absence of a certain colour). The assays used were all for the detection of an enzyme found in P. falciparum in order to diagnose malaria. The authors sought to identify the optimal readout times for the different methods in order to prevent false positives.

HRP = P. falciparum histone rich protein 2; DAB = 3,3'-diaminobenzidine; TMB = 3,3′,5,5′-tetramethylbenzidine; ALP = alkaline phosphatase;NBT = nitro-blue tetrazolium;BCIP = 5-bromo-4-chloro-3-indolyl phosphate

Time course for colour generation on negative and positive surfaces using different colorimetric methods

One of the main purposes of this study was to compare a new paper-based assay that had recently been developed by Sikes in collaboration with George Whitesides at Harvard (Lab on a Chip, 2015) with other state-of-the-art methods.

The new method in question is a colorimetric assay that utilises a photo-initiated polymerisation reaction to amplify the signal when the P. falciparum enzyme is present. The reaction only occurs when the sample is being irradiated, so by using an automated timing switch the reaction time can be accurately controlled and no further signal amplification will take place once the light has been turned off. In contrast, other methods require accurate manual time keeping as they are thermally rather than photochemically controlled. This means that if the sample is left too long, it may lead to false positives due to colour forming in a negative sample.

This can be seen in the figure on the right, where positive and negative controls detected using the different colorimetric methods were photographed at various time points. All the methods tested had the same binding events in order to allow a fair comparison (i.e., all assay steps were the same apart from the detection method). A diagram included in the manuscript (Scheme 2) shows the key steps to all the assays, and how the colour is formed.

Three of the methods were enzymatic amplifications; for these reactions t=0 was taken as when the substrate solution was added to the surface of the paper. Another method was silver deposition, and t=0 was taken as when the silver enhancement solution was added to the surface. For the polymerisation-based amplification (PBA) method, the aqueous monomer was added to the surface and after illumination a basic solution was added, which led to formation of colour in the positive samples; t=0 was taken as when the basic solution was added.

In all cases other than the photo-controlled reaction, colour developed in the negative controls over time, leading to very similar results as in the positive controls. These assays are usually used at the point of care in resource limited settings, therefore the readouts are carried out by eye and there is often not a negative control to compare to. Instead, the result is compared to a colour chart, making it even easier to obtain a false positive if the readout time is not correct.

For the enzymatic amplification and silver deposition the optimal readout times varied considerably and in some cases the time window was very narrow, in order to prevent false positives. In the PBA reaction however, no colour developed in the negative control over 40 minutes, and at all time intervals there was a clear difference between the positive and negative controls. In addition to this, the visual limit of detection for the PBA reaction was much higher than that of the enzymatic amplifications and silver deposition.

This study is the first to compare multiple colorimetric methods for paper-based immunoassays with carefully controlled variables. Previously, different binding reagents, imaging techniques and methods of quantification have meant that meaningful comparisons could not be obtained. The results clearly highlight the benefits of using a photo-controlled reaction, where the reaction time can be carefully controlled with an automated timer without the requirement of accurate manual time keeping.

To download the full article for free* click the link below:

Assessment of colorimetric amplification methods in a paper-based immunoassay for diagnosis of malaria
Shefali Lathwal and Hadley D. Sikes
Lab Chip, 2016, Advance Article

DOI: 10.1039/C6LC00058D
—————-

About the webwriter

Claire Weston is a PhD student in the Fuchter Group, at Imperial College London. Her work is focused on developing novel photoswitches and photoswitchable inhibitors.

—————-

*Access is free until 27/04/2016 through a registered RSC account – click here to register

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New YouTube Videos

A highly addressable static droplet array enabling digital control of single droplet at pico-volume resolution

On-chip droplet production regimes using surface acoustic waves

Light-driven 3D droplet manipulation on flexible optoelectrowetting devices fabricated by a simple spin-coating method

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)