Archive for May, 2014

Illuminating the issue of real-time nanomaterial characterization

Fluorescence complexation could hold the key to more detailed monitoring of airborne nanomaterials. Researchers at Texas A&M University, USA describe the successful development of a new method of simultaneous online quantification and characterization.

Fluorescent Complexation

The increased manufacture and use of nanomaterials has led to increased concerns about their associated health risks, particularly in the occupational setting. One of the main barriers to addressing uncertainties in this field is a poor understanding of personal exposure levels. There is currently a lack of sufficient dynamic data regarding the main exposure routes for airborne nanomaterials so appropriate exposure guidelines, profiles and models cannot be established.

It is important, therefore to establish effective means of measuring the levels and chemical/physical properties of nanomaterials in real-time. Preferred traditional means of nanomaterial analysis e.g. mass spectrometry (MS) and electron microscopy (EM) cannot be easily adapted to use in an online capacity. This means exposure analysis is generally slow and can only be carried out for relatively short, unrepresentative time-frames.

In this study Fanxu Meng and co-workers introduce and demonstrate an integrated methodology that allows continuous online monitoring of the levels and characterization of airborne nanomaterials. This method combines ultra high flow sampling with a sensitive fluorescence-based detection system.

The sampling system comprised a modified wetted wall cyclone (WWC) collector which has an ultra high flow rate (>1000 L min-1) combined with a continuous flow microfluidic network allowing online detection capability. The detection system utilized florescence generated by the combination of a suspension of collected nanoparticles and a tracer dye solution. The resulting dye-nanoparticle complex produces an intense and easily detectible fluorescent signature, dependent on the quantity and the physical/chemical properties of the collected nanomaterials.

The integrated system was tested using prepared suspensions of Al2O3. A scanning mobility particle sizer (SMPS) was used to quantify the concentration and size distribution of nanoparticles inside the test chamber. It was shown that florescence displays a characteristic pattern, dependent on the concentration but also the size and particle surface area of the nanomaterials. A linear correlation between florescence intensity and airborne concentration of Al2O3 at concentrations up to 1.0-1.2 wt% at flow rates of 0.2 and 0.02 mL min-1 was observed.

This work provides a platform for continuous measurement of airborne nanomaterials. Simultaneous sampling and compound characterization can enable better time-resolved assessment of the transport and fate of released nanomaterials and identification of hazardous releases. The method described is capable of sampling a broad range of air volumes (representative of the work place environment) and allows online detection and analysis. The authors highlight potential further innovations for this work, possibly leading to more detailed exposure profiles for nanomaterials; establishing fluorescence “fingerprints” for a range of different nanoparticles; and analysis of biological material.

Download the full article for free* today!

Localized Fluorescent Complexation Enables Rapid Monitoring of Airborne Nanoparticles
Fanxu Meng, Maria D. King, Yassin A. Hassan, and Victor M. Ugaz
DOI: 10.1039/C4EN00017J

*Access is free through a registered RSC account – click here to register

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Most accessed Environmental Science: Nano articles in Q1 2014

Most accessed articles from January – March 2014

Recent advances in BiOX (X = Cl, Br and I) photocatalysts: synthesis, modification, facet effects and mechanisms
Liqun Ye, Yurong Su, Xiaoli Jin, Haiquan Xie and Can Zhang
Environ. Sci.: Nano, 2014,1, 90-112
DOI: 10.1039/C3EN00098B

Green synthesis and formation mechanism of cellulose nanocrystal-supported gold nanoparticles with enhanced catalytic performance
Xiaodong Wu, Canhui Lu, Zehang Zhou, Guiping Yuan, Rui Xiong and Xinxing Zhang
Environ. Sci.: Nano, 2014,1, 71-79
DOI: 10.1039/C3EN00066D

Natural water chemistry (dissolved organic carbon, pH, and hardness) modulates colloidal stability, dissolution, and antimicrobial activity of citrate functionalized silver nanoparticles
Lok R. Pokhrel, Brajesh Dubey and Phillip R. Scheuerman
Environ. Sci.: Nano, 2014,1, 45-54
DOI: 10.1039/C3EN00017F

A minor lipid component of soy lecithin causes growth of triangular prismatic gold nanoparticles
Benjamin R. Ayres and Scott M. Reed
Environ. Sci.: Nano, 2014,1, 37-44
DOI: 10.1039/C3EN00015J

Characterization of particle emissions and fate of nanomaterials during incineration
Eric P. Vejerano, Elena C. Leon, Amara L. Holder and Linsey C. Marr
Environ. Sci.: Nano, 2014,1, 133-143
DOI: 10.1039/C3EN00080J

Effect of natural organic matter on the disagglomeration of manufactured TiO2 nanoparticles
Frédéric Loosli, Philippe Le Coustumer and Serge Stoll
Environ. Sci.: Nano, 2014,1, 154-160
DOI: 10.1039/C3EN00061C

A chemical free, nanotechnology-based method for airborne bacterial inactivation using engineered water nanostructures
Georgios Pyrgiotakis, James McDevitt, Andre Bordini, Edgar Diaz, Ramon Molina, Christa Watson, Glen Deloid, Steve Lenard, Natalie Fix, Yosuke Mizuyama, Toshiyuki Yamauchi, Joseph Brain and Philip Demokritou
Environ. Sci.: Nano, 2014,1, 15-26
DOI: 10.1039/C3EN00007A

Interactions between polybrominated diphenyl ethers and graphene surface: a DFT and MD investigation
Ning Ding, Xiangfeng Chen and Chi-Man Lawrence Wu
Environ. Sci.: Nano, 2014,1, 55-63
DOI: 10.1039/C3EN00037K

Deposition of nanoparticles onto polysaccharide-coated surfaces: implications for nanoparticle–biofilm interactions
Kaoru Ikuma, Andrew S. Madden, Alan W. Decho and Boris L. T. Lau
Environ. Sci.: Nano, 2014,1, 117-122
DOI: 10.1039/C3EN00075C

Quantitative assessment of inhalation exposure and deposited dose of aerosol from nanotechnology-based consumer sprays
Yevgen Nazarenko, Paul J. Lioy and Gediminas Mainelis
Environ. Sci.: Nano, 2014,1, 161-171
DOI: 10.1039/C3EN00053B

Why not take a look at the articles today and blog your thoughts and comments below.

Fancy submitting an article to ESNano? Then why not submit to us today or alternatively email us your suggestions.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Nanoparticle sulfidation transformations

A study by Gregory Lowry and colleagues from Carnegie Mellon University suggests that Copper Oxide (CuO) nanoparticles (NPs) are sulfidized in the environment, affecting their resulting properties. Some of the affected properties, such as solubility are relevant to the toxicity of these nanoparticles in the environment.

Many nanoparticles are transformed in the environment; it is often the transformed materials which cause concern with regards to nanoparticle toxicity. There have been several papers highlighting how important it is to research the properties of nanoparticle transformations. A recent review by Nasia Von Moos provides an overview of what is currently known about environmental transformations of nanomaterials in freshwater systems, a recent paper by Julián A. Gallego-Urrea discusses the transformations which TiO2 nanoparticles undergo once they reach the aquatic environment and this research paper reports that sulfidation is an important transformation for some metal oxide nanoparticles, such as CuO NPs.

Why is sulfidation in the environment important?

Copper-based NPs are being used in semiconductors, heat transfer fluids, catalysts, batteries and many more products and technologies. Their wide spread uses will likely lead to subsequent release into the environment, raising concerns about their potential toxicity. It has already been demonstrated that CuO NPs are toxic to many organisms including crustaceans, algae and fish; although Cu2+ is more toxic to most of these organisms. It is therefore essential to determine what the products of sulfidized CuO NPs are and if they are more or less toxic to the environment when compared with pristine CuO.

Sulfidation of CuO

Cuo NPs were characterized and sulfidized in water by inorganic sulfide. Characterization of the resulting products showed that CuO is sulfidized to several copper sulphide species including crystalline CuS (covellite), amorphous (CuxSy) species and copper sulphate hydroxide species. In previous studies it has been demonstrated shown that sulfidation decreases the solubility and metal availability of Ag and ZnO NPs. This study however shows that the sulfidation of CuO NPs breaks the trend. Sulfidation actually increased the dissolved fraction of copper compared to pristine CuO NPs. This increased release of Cu2+ and CuS nanoclusters from sulfidized NPs compared to CuO suggests that toxicity studies with pristine CuO may be misleading in environments where sulfidation is likely to occur, demonstrating that it is prudent to use environmentally transformed nanoparticles in fate, transport and toxicitiy studies rather than focusing soley on the prisitne materials. Access the full article for free* by clicking the link below.

Sulfidation of copper oxide nanoparticles and properties of resulting copper sulfide
Rui Ma, John Stegemeier, Clement Levard, James Dale, Clinton W Noack, Tittany Yang, Gordon Brown and Gregory Lowry
DOI: 10.1039/C4EN00018H

*Access is free through a registered RSC account – click here to register

The author recommends further studies which are still needed to:

  1. Identify the nature of the CuxSy nanoclusters.
  2. Assess the toxicity of sulfidized CuO NPs and CuxSy nanoclusters.
  3. Assess the stability of very small metal sulphide clusters (Ag, Zn and Cu) against oxidation under environmental and biological conditions.
  4. Assess how sulfidation of CuO NPs occurs in situ at relevant CuO/S concentration ratios and how this affects their bioavailability under realistic exposure scenarios.
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Vicki Grassian is the 2014 John Jeyes Award Winner

John Jeyes 2014 Award WinnerProfessor Vicki Grassian, Chair of Environmental Science: Nano has won the 2014 John Jeyes Award for her pioneering contributions to the chemistry of environmental interfaces, heterogeneous atmospheric chemistry and the environmental implications of nanomaterials.

It is truly an honor to receive this award Grassian said.

The John Jeyes Award, founded in 1975, is a biennial award for chemistry in relation to the environment. Vicki Grassian, Founding Director of the Nanoscience and Nanotechnology Institute at the University of Iowa, has mentored over one hundred students and postdocs in her laboratory, many of them now having their own research programs focused on energy and the environment.

The John Jeyes Award is wonderful recognition of the research that has been done by the students and postdoctoral associates who have worked in my laboratoryGrassian said.

We would like to congratulate Vicki on her achievement and take this opportunity to thank Vicki for her pioneering contributions to Environmental Science: Nano, bringing together a variety of communities to publish their work on nanoscience and the implications for the environment, health and sustainability.

Vicki’s latest Environmental Science: Nano paper Iron oxide nanoparticles induce Pseudomonas aeruginosa growth, induce biofilm formation and inhibit antimicrobial peptide function (C3EN00029J) is included in a dedicated themed collection of papers celebrating the 2014 RSC Prize and Award winners. All articles in this collection are free* to access until 6th June.

*Access is free through a registered RSC account – click here to register

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Applications of porous nanomaterials

Sean Lehman and Sarah Larsen from the University of Iowa review zeolite and mesoporous silica nanomaterials with emphasis on connections to the environment.

In recent years, there has been a great deal of interest in zeolites and mesoporous silica nanomaterials (MSNs). Zeolites are widely used in industry for applications such as catalysis, separations and gas adsorption, however the authors believe that these porous nanomaterials have a largely unrealized commercial potential for environmental applications.

Structures of porous nanomaterials

This review article covers three major areas:

  1. Greener synthesis of zeolite and MSNs
  2. Potential of zeolite and MSNs for environmental applications
  3. The biological toxicity of zeolite and MSNs

Due to cost and reduced thermal stability MSNs are not as extensively applied as zeolite; however they are currently being investigated for potential environmental and biomedical applications. Their varied physiochemical properties open up a wide range of potential applications. The more applications that these porous nanomaterials have in industry, the greater the interested in developing greener synthesis for them and reducing their toxicity. With two measurements which are on the nanoscale, pore size as well as particle size, zeolites and MSN make very interesting nanomaterials.

This review describes both the environmental applications, including environmental catalysis and adsorption of environmental contaminants, and implications of zeolite and MSNs. Due to concerns that increased use of these materials translates to increased exposures, toxicity studies of both nanomaterials are also reviewed.

To read the full review for free* click the link below:

Zeolite and Mesoporous Silica Nanomaterials: Greener Syntheses, Environmental Applications and Biological Toxicity

Sean E Lehman and Sarah C Larsen
DOI: 10.1039/C4EN00031E, Critical Review

Zeolites and MSNs are silicate or aluminosilicate nanomaterials with well-defined pore networks; there are however some differences between the two porous nanomaterials.

Properties of zeolites:

  • Crystalline aluminosilicates (or silicates)
  • Regular arrangements of micropores
  • High surface areas
  • Exchangeable cations

Properties of MSN:

  • Amorphous silica materials
  • Regualr arrangement of mesopores
  • Very high surface area

The first area discussed in this review is the synthesis of zeolite and MSNs using green synthetic routes. The green strategies can be organized into three main categories: solvent, template and heating. The diagram below demonstrates the strategies for the greener synthesis of zeolites and mesoporous silica.

Greener synthesis of zeolites and mesoporous silica

*Access is free through a registered RSC account – click here to register

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)