How can you assess the impact of multiple methane sources to the environment?

In this HOT article, collaborators in Australia and California devise methods of assessing contributions of landfill and natural gas methane to mixtures in soil gas and groundwater. They use half-lives and concentration ratios to evaluate the age of release.

The group at URS Australia Pty Ltd, Geosyntec Consultants and Redwood Waste Management California, focus on the problem of methane from landfill gas migrating away underneath the surface of landfill sites. It is a particular problem due to methane’s flammable nature. Landfill gas is not the only source of migrating methane. Sources include natural organic matter decomposition, natural gas in supply lines, degradation of petroleum products and underground reservoirs of natural gas. There are many indicators used to determine the source of natural gas, such as the presence of CO2 being a marker for biodegradation. Carbon and hydrogen isotope composition is also used.

These researchers argue that using multiples of these indicators is the most reliable way to understand sources and migration pathways. This paper introduces a methodology to assess all of these different indicators at a complex site with multiple methane sources. Knowing the age of landfill gas using VOCs concentrations is a helpful parameter when assessing migration distance and time. This methodology using methane radioisotope data can distinguish on-going release from an inactive source and determine relative contributions of landfill gas and thermogenic methane to the environment. The theoretical basis for estimating landfill gas age is described in detail and applied to a case study at a municipal solid waste disposal facility in California.

As always, we’ve made this fascinating HOT research free to access for 4 weeks*!

Evaluation of the age of landfill gas methane in landfill gas–natural gas mixtures using co-occurring constituents
Henry B. Kerfoot, Benjamin Hagedorn and Mark Verwiel 
DOI: 10.1039/C3EM30971A

*Free access to individuals is provided through an RSC Publishing personal account. Registration is quick, free and simple

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Leave a Reply

*