Silk fibroin microspheres as optical resonators for wide-range humidity sensing and biodegradable lasers

Silk fibroin (SF) is a biopolymer from Bombyx mori mulberry silkworm that has been utilized as textile for millennia. Recent advancement has emphasized to the biodegradation and biocompatibility of silk for medical applications. 

Due to the hydrogen bonding in silk fibroin, SF interacts with water molecules through the random coil conformation, while the β-sheet conformation provides mechanical strength to the entire spherical structure. 

Figure 1. Optical (a), fluorescence (b), and SEM (c) images of the SF microspheres. Scale bars: 5 µm. (d) PL spectra of a single SF microsphere upon excitation with cw laser (λex = 450 nm). Each WGM peak is assigned as shown on the bottom. (e) PL spectra of a single SF microsphere upon excitation with fs pulsed laser.

Recently, the group of Prof. Yohei Yamamoto and collaborators of University of Tsukuba have demonstrated that self-assembled SF microspheres, doped with ionic fluorescent dye, display resonant luminescence, which shifts in response to the humidity change. The resonant peaks result from the total internal reflection of the fluorescence, causing interference at the circumference of the microspheres. The SF microspheres display lasing property upon femto-second laser pumping (Figure 1).

The WGM peaks respond to the change of the ambient humidity. When the humidity is low, SF microsphere release water molecules, leading to shrinkage of the SF microsphere and thereby causing the WGM peaks shift to the lower wavelength. In the reversal process where ambient humidity is high, SF microsphere is hydrated, causing the shift WGM of the WGM peaks to the higher wavelength (Figure 2).

Figure 2. (a) Humidity-dependent PL spectra of a single SF microsphere upon excitation with cw laser (λex = 450 nm). (b) Plot of the wavelength of the resonant peak of TE26 upon increasing (filled circle) and decreasing (open circle) the surrounding humidity. (c) Plot of the wavelength of the resonant peak of TE26 upon 6 cycles of hydration (red) and dehydration (blue) between 93 and 25 %RH.

It is interesting to highlight the secondary structure of silk fibroin. Upon treated with alcohol, β-sheet conformation is increased, providing rigid structure for the SF microspheres while the remaining random coil structure in the SF microspheres is interacting with ambient moisture. This combination contributes to the SF microsphere for obtaining a high responsivity and high sensing range toward humidity.

These properties have given a new prospect or direction for designing next generation microresonators for optical sensing or lasing applications.

Prof. Yohei Yamamoto, University of Tsukuba

Yohei Yamamoto is a professor in the department of materials Science, faculty of Pure and applied sciences, University of Tsukuba. He received his doctor degree in 2003 from Osaka University. After post-doctoral researcher term, he was appointed as an associate professor in University of Tsukuba at 2010. on 2018, he promoted to full professor in University of Tsukuba. His research interests are self-assembly of π-conjugated molecules, polymers and biomolecules to construct electronically and optically active nano/micrometer-scale materials. He is the author of more than 90 articles and cited more than 2900 times with an index H = 28.

https://publons.com/researcher/1757952//

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Materials Chemistry Frontiers 2020 Best Paper Prizes

By .

Materials Chemistry Frontiers 2020 Best Paper Prizes

 

From this year onwards, we would like to introduce the Materials Chemistry Frontiers Best Paper prizes which recognize the most outstanding papers published in the journal. After a selection process involving the Associate Editors, Editorial and Advisory Board members, we have chosen to award not only a best paper but also a runner-up and a best review.

Best Paper

Cyclobutene based macrocycles

Pan Wang, Ruqiang Lu, Arthur France-Lanord, Yanming Wang, Jingjing Zhou, Jeffrey C. Grossman and Timothy M. Swager

Mater. Chem. Front., 2020,4, 3529-3538
https://doi.org/10.1039/D0QM00824A

Corresponding authors:

Timothy M. Swager is the John D. MacArthur Professor of Chemistry and the Director, Deshpande Center for Technological Innovation at the Massachusetts Institute of Technology. A native of Montana, he received a BS from Montana State University in 1983 and a Ph.D. from the California Institute of Technology in 1988.  After a postdoctoral appointment at MIT he was on the chemistry faculty at the University of Pennsylvania 1990-1996 and returned to MIT in 1996 as a Professor of Chemistry and served as the Head of Chemistry from 2005-2010.  He has published more than 500 peer-reviewed papers and more than 110 issued/pending patents. Swager’s honors include: Election to the National Academy of Sciences, an Honorary Doctorate from Montana State University, National Academy of Inventors Fellow, The Pauling Medal, The Lemelson-MIT Award for Invention and Innovation, Election to the American Academy of Arts and Sciences, The American Chemical Society Award for Creative Invention, The American Chemical Society Award in Polymer Chemistry, The Christopher Columbus Foundation Homeland Security Award, and The Carl S. Marvel Creative Polymer Chemistry Award (ACS).

Swager’s research interests are in design, synthesis, and study of organic-based electronic, sensory, energy harvesting, membrane, high-strength, liquid crystalline, and colloid materials.  His liquid crystal designs demonstrated shape complementarity to generate specific interactions between molecules and includes fundamental mechanisms for increasing liquid crystal order by a new mechanism referred to as minimization of free volume. Swager’s research in electronic polymers has been mainly directed at the demonstration of new conceptual approaches to the construction of sensory materials.  These methods are the basis of the FidoTM explosives detectors (FLIR Systems Inc), which have the highest sensitivity of any explosives sensor.   Other areas actively investigated by the Swager group include radicals for dynamic nuclear polarization, applications of nano-carbon materials, organic photovoltaic materials, polymer actuators, membranes, and luminescent molecular probes for medical diagnostics.  He has founded five companies (DyNuPol, Iptyx, PolyJoule, C¬2 Sense and Xibus Systems) and has served on a number of corporate and government boards.

ORCID: https://orcid.org/0000-0002-3577-0510

 

Jeffrey C. Grossman is the Department Head of Materials Science and Engineering at the Massachusetts Institute of Technology and the Morton and Claire Goulder and Family Professor in Environmental Systems. He received his PhD in theoretical physics from the University of Illinois and performed postdoctoral work at the University of California at Berkeley. He was a Lawrence Fellow at the Lawrence Livermore National Laboratory and returned to Berkeley as director of a Nanoscience Center and head of the Computational Nanoscience research group, with a focus on energy applications. In fall 2009, he joined MIT, where he has developed a research program known for its contributions to energy conversion, energy storage, membranes, and clean-water technologies. In recognition of his contributions to engineering education, Grossman was named an MIT MacVicar Faculty Fellow and received the Bose Award for Excellence in Teaching, in addition to being named a fellow of the American Physical Society. He has published more than 200 scientific papers, holds 17 current or pending U.S. patents, and recently co-founded a company to commercialize graphene-oxide membranes.

ORCID: https://orcid.org/0000-0003-1281-2359

 

Best Paper Runner-up

A polymorphic fluorescent material with strong solid state emission and multi-stimuli-responsive properties

Ji-Yu Zhu, Chun-Xiang Li, Peng-Zhong Chen, Zhiwei Ma, Bo Zou, Li-Ya Niu, Ganglong Cui and Qing-Zheng Yang

Mater. Chem. Front., 2020,4, 176-181
https://doi.org/10.1039/C9QM00518H

Corresponding authors:

Qing-Zheng Yang received his PhD in 2003 from the Technical Institute of Physics and Chemisty (TIPC), CAS. After completing postdoctoral research at the University Louis Pasteur and at the University of Illinois, Urbana, he returned to TIPC in 2009 as a full professor. He moved to Beijing Normal University in 2014, where he is a professor of chemistry. He received an APA Prize for Young Scientist from the Asian and Oceanian Photochemistry Association in 2013, Distinguished Young Scholar award from NSFC and Advanced Newton Fellowship from Royal Society in 2015. His research interests cover photochemistry of supramolecular assemblies, photodynamic therapy and fluorescent probes for bioimaging.

ORCID: https://orcid.org/0000-0002-9131-4907

 

Ganglong Cui got his B.S. degree in Chemistry from Beijing Normal University in 2004. He studied theoretical chemistry under the supervision of Prof. Wei-Hai Fang at Beijing Normal University and Prof. Weitao Yang at Duke University and earned his Ph.D. degree in Theoretical Chemistry in 2009. He continued his research as a postdoctoral associate with Prof. Weitao Yang at Duke University from 2010 to 2011 and as a Max-Planck and Alexander von Humboldt Scholars with Prof. Walter Thiel at Max-Planck-Institut für Kohlenforschung from 2011 to 2014. Then, he joined College of Chemistry in Beijing Normal University and the Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, and became a full professor in 2014. His present research interests are mainly focused on developing and applying accurate and efficient excited-state electronic structure and ab initio nonadiabatic and adiabatic dynamics methods for simulating photophysical and photochemical processes in complex chemical, biological, and materials systems. Until now he has published more than 130 SCI papers and has been invited to give scientific talks at many domestic and foreign conferences. He has been supported by the National High-Level Young Talents Project, the Outstanding Youth Fund of the National Natural Science Foundation of China, the Key R&D Project of the Ministry of Science and Technology, etc.

ORCID: https://orcid.org/0000-0002-9752-1659

 

 

Best Review

Advanced functional polymer materials

Kaojin Wang, Kamran Amin, Zesheng An, Zhengxu Cai, Hong Chen, Hongzheng Chen, Yuping Dong, Xiao Feng, Weiqiang Fu, Jiabao Gu, Yanchun Han, Doudou Hu, Rongrong Hu, Die Huang, Fei Huang, Feihe Huang, Yuzhang Huang, Jian Jin, Xin Jin, Qianqian Li, Tengfei Li, Zhen Li, Zhibo Li, Jiangang Liu, Jing Liu, Shiyong Liu, Huisheng Peng, Anjun Qin, Xin Qing, Youqing Shen, Jianbing Shi, Xuemei Sun, Bin Tong, Bo Wang, Hu Wang, Lixiang Wang, Shu Wang, Zhixiang Wei, Tao Xie, Chunye Xu, Huaping Xu, Zhi-Kang Xu, Bai Yang, Yanlei Yu, Xuan Zeng, Xiaowei Zhan, Guangzhao Zhang, Jie Zhang, Ming Qiu Zhang, Xian-Zheng Zhang, Xiao Zhang, Yi Zhang, Yuanyuan Zhang, Changsheng Zhao, Weifeng Zhao, Yongfeng Zhou, Zhuxian Zhou, Jintao Zhu, Xinyuan Zhu and Ben Zhong Tang

Mater. Chem. Front., 2020,4, 1803-1915
https://doi.org/10.1039/D0QM00025F

Corresponding author:

Ben Zhong Tang is professor in The Chinese University of Hong Kong, Shenzhen (CUHK-SZ), China. He is serving as Dean of the School of Science and Engineering at CUHK-SZ, Director of AIE Institute, and Dean of SCUT-HKUST Joint Research Institute. He received BS and PhD degrees from South China University of Technology and Kyoto University, respectively, and conducted postdoctoral research at University of Toronto. He joined HKUST as an assistant professor in 1994 and was promoted to chair professor in 2008. He was elected to Chinese Academy of Sciences (CAS), Royal Society of Chemistry (RSC), Asia Pacific Academy of Materials, and World Academy of Sciences for the Advancement of Science in Developing Countries in 2009, 2013, 2017 and 2020, respectively. His research interests include macromolecular chemistry, materials science, and biomedical theranostics. He has published over 1,600 papers which have been cited for over 119,000 times, with an h-index of 155. He has been selected as a Highly Cited Researcher in both areas of Chemistry and Materials Science by Web of Science since 2014. He has received the State Natural Science Award (1st Class; 2017) from the Chinese Government, the Scientific and Technological Progress Award from the Ho Leung Ho Lee Foundation (2017) and Senior Research Fellowship from the Croucher Foundation (2007).

Prof. Tang mainly engages in polymer chemistry and advanced functional materials research, especially in the field of chemistry and materials in the field of Aggregation-Induced Emission (AIE). He is the originator of AIE concept and the leader of AIE research. Personal Home Page: https://tangbz.ust.hk/tbz.html

ORCID: https://orcid.org/0000-0002-0293-964X

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Dual-Template Approach to Hierarchically Porous Polymer Membranes

By .

Polymer membranes are an important class of materials that find use in a wide variety of fields. The suitability of a polymer membrane often requires careful tuning of their properties to the target application. This must be balanced with the cost of any modification. Hence the non-solvent induced phase separation method (NIPS) is a common route of manufacture for polymer membranes, as it is easy to accomplish on a commercial scale at low-cost.’

In the NIPS method, the polymer of choice is first dissolved in a good solvent, along with any additives, before its immersion in a non-solvent to produce the membrane morphology. This morphology typically shows a dense skin-layer with smaller pores above a layer of larger finger-like vertical pores. By careful choice of additive, some of the membrane properties, including hydrophilicity and microstructure, can be modified.

Poly(ethersulfone) (PES) is a material commonly used for water filtration membranes, chosen for its good mechanical, thermal and chemical properties. Use of an amphiphilic surfactant additive has been shown to produce a membrane with a larger and more well-defined microstructure in the larger finger-like pore regime, as well as increasing the surface hydrophilicity, a key requirement for reduction in biological fouling.

This work by Southern and Evans of the University of Cambridge introduces an additional level of structural hierarchy by the use of a second template molecule, 4-(phenylazo)benzoic acid (PABA), as well as the surfactant Pluronic® F127 (F127) to allow templating of both the dense skin layer and the larger pores. This addition of PABA leads to a more fibrous structure at the 1μm level, leading to higher pore connectivity and permeability, compared to membranes templated only with F127 (Figure 1).

Figure 1a. shows the poor connectivity of the skin layer of a membrane templated with only F127, compared to the fibrous structure of a membrane templated with both F127 and PABA shown in Figure 1b.

Their work demonstrates that this fibrous structure leads to a remarkable increase in flow rate that is improved further by the subsequent removal of the PABA. Extraction using ethanol is shown to provide an excellent approach for removal. This extraction method also allows recycling of the PABA for further membrane manufacture.

This dual-template approach, as part of the NIPS process, can be used to easily modify membrane manufacture, producing membranes exhibiting a hierarchical structure with improved pore connectivity, which could find use as energy materials or in water filtration.

Authors:

Dr Rachel C. Evans

Dr Rachel Evans obtained her MChem and PhD in Physical Chemistry from Swansea University. She was a Marie Curie Postdoctoral Fellow at the Université Paris-Sud, France and subsequently held an FCT research fellowship between the University of Coimbra and the University of Aveiro, Portugal. From 2009-2016, she was an Assistant, then Associate Professor in Physical Chemistry at Trinity College Dublin (TCD). In 2017, Rachel moved back to the UK to take up a University Lectureship at the University of Cambridge in the Department of Materials Science and Metallurgy. Rachel’s research is multidisciplinary and involves polymer, colloid and photophysical chemistry. Her current work is focused on the development of photoactive polymer-hybrid materials for luminescent solar devices, organic photovoltaics and stimuli-responsive membranes. She is a Fellow of the Royal Society of Chemistry and the Institute of Materials, Minerals and Mining and. In 2017, she was awarded the Dillwyn Medal for STEMM from the Learned Society of Wales and the MacroGroup UK Young Researcher’s Medal.

Thomas Southern graduated from the University of Cambridge with an MSci and B.A. in Materials Science. In 2017, Thomas began his PhD as part of the Functional Photoactive Materials group at the Department of Materials Science and Metallurgy, within the University of Cambridge. Thomas’ work, funded by an EPSRC studentship, focuses on hierarchically porous membranes for environmental remediation.

Article information:

Dual-template approach to hierarchically porous polymer membranes
Thomas J. F. Southern and Rachel C. Evans
Mater. Chem. Front., 2021, Advance Article
https://doi.org/10.1039/D0QM00610F

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Shu-Hong Yu — introducing the new Editor-in-Chief of Materials Chemistry Frontiers

By .

We are delighted to announce the new Editor-in-Chief for Materials Chemistry Frontiers, Shu-Hong Yu from University of Science and Technology of China!

Shu-Hong Yu completed PhD in inorganic chemistry in 1998 from University of Science and Technology of China. From 1999 to 2001, he worked in Tokyo Institute of Technology as a Postdoctoral Fellow, and was awarded the AvH Fellowship (2001-2002) in the Max Planck Institute of Colloids and Interfaces, Germany. He was appointed as a full professor in 2002 and the Cheung Kong Professorship in 2006. He was elected as Academician of Chinese Academy of Sciences in 2019. He serves as the Director of the Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale.

His research interests include bio-inspired synthesis of inorganic nanostructures, self-assembly of nanoscale building blocks, nanocomposites, their related properties and applications. His research work has been cited more than 56,400 citations (H index 132), named as a Highly Cited Researcher from 2014 to 2020.

It is an honour to serve as Editor-in-Chief of Materials Chemistry Frontiers. I look forward to working together with the Editorial Board to maintain the high-quality standards of our journal and to continue its success.

Read Shu-Hong’s latest review article in MCF on nanowire materials.

Shu-Hong will formally assume the role of Editor-in-Chief on 21st December 2020 from Professor Ben Zhong Tang, who has led the journal since launched. We would like to thank Ben Zhong for his years of hard work, dedication and diligence. MCF has maintained a rapid and steady growth on its scientific quality and global impact during the past four years. We are confident Shu-Hong will continue the many successes of MCF and keep enhancing the flourishing reputation of the journal under his leadership.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Materials Chemistry Frontiers Desktop Seminar: Celebrating Prof. Fred Wudl’ s 80th Birthday

By .

Materials Chemistry Frontiers is pleased to announce a Webinar Celebrating Prof. Fred Wudl’ s 80th Birthday. It will focus on the topic of organic semiconductors showcasing the latest work from Fred Wudl and his friends.

Register Now

https://rsc.zoom.us/webinar/register/WN_eTodlScqT-W8SugtlJUH2A

 

Schedule


11 December 2020, 9:30-12:00 am (UTC+8)

Time Talk title Speaker
9:30 – 9:35 Opening speech Dmitrii F. Perepichka (Chair)
9:35 – 10:20 Fifty Years of Fun with Organo-Sulfur Chemistry and Materials Science Fred Wudl
10:20 – 10:45 A Brief History of Conjugated Polyelectrolytes: In Honor of Prof. Fred Wudl Kirk Schanze
10:45 – 11:10 Conjugation Functional Organic and Polymeric Materials for OPV Yongsheng Chen
11:10 – 11:35 Non-Classical Thiophene-based Imide Materials as n-Type Semiconductors Hong Meng
11:35 – 12:00 Towards Higher Twisted Acenes and Azaacenes Qichun Zhang

 

Biography


Speakers:

Prof. Fred Wudl, University of California, Santa Barbara

Fred Wudl, Retired 2019, University of UCSB. B.S. 1964 and Ph.D. 1967, UCLA and postdoctoral, Harvard, 1968 to 1972 SUNY Buffalo, 1972 – 1982 Bell Laboratories, 1982 – 1997 UCSB, 1997 – 2006 UCLA, 2006 – 2019 UCSB. Discovered the electronic conductivity of the precursor to the first organic metal and superconductor. Research interests in conducting polymers. Currently interests in optical and electrooptical properties of processable conjugated polymers, organic chemistry of fullerenes, design and preparation of self-mending and self-healing materials and Li batteries. Received numerous and has published over 595 papers with 47,500 citations and H index of 100.

 

Prof. Kirk Schanze, University of Texas at San Antonio

Kirk Schanze earned his B.S. in Chemistry from Florida State University in 1979 and his Ph.D. in Chemistry from the University of North Carolina at Chapel Hill in 1983. He was appointed a Miller Postdoctoral Fellow at the University of California, Berkeley, from 1984-1986 and began his independent faculty career at the University of Florida in 1986. Schanze was University Distinguished Professor and Prominski Professor of Chemistry at the University of Florida until 2016. He is currently the Robert A Welch Distinguished University Professor at the University of Texas at San Antonio. He was a Senior Editor of the ACS journal Langmuir from 2000-2008. Since 2008, Schanze is Editor-in-Chief of ACS Applied Materials & Interfaces, the ACS journal focused on chemistry and engineering of applications-focused research in materials and interfaces.He has authored or co-authored more than 300 peer-reviewed articles on basic and applied research topics, with a primary focus on organic and organometallic materials chemistry, and is named in 20 patents or disclosures.

 

Prof. Yongsheng Chen, Nankai University

He got his PhD in 1997 at University of Victoria with Prof Reg Mitchel. From 1997-1999, he had worked as a Postdoc at UCLA with Prof Fred Wudl and University of Kentucky with Prof Robert Haddon. From 2003, he has been working at Nankai University as a chair professor.

He has published over 300 papers, including that in Science, Nature, JACS, AM, etc., which have been cited over 50000 times with H-index of 102. He has been recognized as one of highly-cited researchers by Clarivate Analytics since 2014.

 

Prof. Hong Meng, Peking University Shenzhen Graduate School

Hong Meng received his PhD under the guidance of Prof. Fred Wudl from University of California, Los Angeles (UCLA), United States in 2002. He has been working in the field of organic electronics for more than 20 years. His career experiences include working in the Institute of Materials Science and Engineering (IMRE) at Singapore, Lucent Technologies Bell Labs, DuPont Experimental Station. In 2012, Dr. Meng joined a laser printing company and conducted new research in chemical toner synthesis, special rubber composites and conducting ink formulations. He was selected under the Recruitment Program of Global Experts in 2013. In 2014, he moved to the School of Advanced Materials at Peking University Shenzhen Graduate School.

Prof. Meng’s research focuses on organic opto-electronic functional materials and devices: 1. Organic Electrochromics; 2. Sensors; 3. Light-Emitting Diodes; 4. Photovoltaics. He has contributed over 130 peer-reviewed papers (Citations: >6000) in Chemistry and Materials Science fields, filed over 46 US patents, 60 Chinese patents, published several book chapters and co-edited one book titled “Organic Light-Emitting Materials and Devices”.

 

Prof. Qichun Zhang, City University of Hong Kong

Qichun Zhang obtained his B.S. at Nanjing University in China in 1992, MS in physical organic chemistry (organic solid lab) at Institute of Chemistry, Chinese Academy of Sciences in 1998, MS in organic chemistry at University of California, Los Angeles (USA), and completed his Ph.D. in chemistry at University of California Riverside in 2007. Then, he joined Prof. Kanatzidis’ group at Northwestern University as a Postdoctoral Fellow (Oct. 2007 –Dec. 2008). Since Jan. 2009, he joined School of Materials Science and Engineering at Nanyang Technological University (NTU, Singapore) as an Assistant Professor. On Mar 1st, 2014, he has promoted to Associate Professor with tenure. On Sep 1st 2020, he moved to Department of Materials Science and Engineering at City University of Hong Kong as a full professor. Currently, he is an associate editor of J. Solid State Chemistry, the International Advisory Board member of Chemistry – An Asian Journal, the Advisory board member of Journal of Materials Chemistry C, the Advisory board member of Materials Chemistry Frontiers, and the Advisory board member of Inorganic Chemistry Frontiers. Also, he is Guest Editor of Inorganic Chemistry Frontiers (2016-2017), Guest Editor of Journal of Materials Chemistry C (2017-2018), and Guest Editor of Inorganic Chemistry Frontiers (2017-2018). In 2018, 2019 and 2020, he has been recognized as one of highly-cited researchers (top 1%) in cross-field in Clarivate Analytics. He is a fellow of the Royal Society of Chemistry. Currently, his research focuses on carbon-rich conjugated materials and their applications. Till now, he has published >395 papers and 5 patents (total citation > 20000, and H-index: 79).

Chair:

Prof. Dmitrii F. Perepichka, McGill University

He studied at Donetsk State University in Ukraine and received PhD in chemistry from the Institute of Physical Organic Chemistry, National Academy of Sciences of Ukraine in 1999. This was followed by post-doctoral training at Durham University with Martin Bryce and at UCLA with Fred Wudl. After his first appointment at INRS-Energy, Materials and Telecommunications, Canada (2003), he moved to McGill University in 2005. The contributions of his research group include low-gap donor-acceptor systems, two-dimensional polymers and covalent organic frameworks, luminescent organic semiconductors, on-surface self-assembly, supramolecular design of semiconductors.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Purity of organic semiconductors substantially increase the performance of organic transistors

By .

In their recent paper in Materials Chemistry Frontiers, published by the Royal Society of Chemistry, the authors Cigdem Yumusak, Niyazi Serdar Sariciftci, Mihai Irimia-Vladu, from the Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry at the Johannes Kepler University Linz, Austria investigated the effects of purification of different organic semiconductors (i.e. n-type, p-type, and ambipolar) in performance of organic field effect transistors (OFETs). The results clearly indicate that performance for the field of organic field effect transistors can be enhanced orders of magnitude by the purification.

Fig. 1: Schematic view of the OFET architecture

Organic semiconductors are interesting through their versatility in high throughput at low cost of production. For achieving the coveted goal of “green” and sustainable electronics development, one can tailor and make these materials biocompatible and biodegradable. The large-scale electronic waste produced in the world is creating trouble in the supply chain of rare earth materials as well as plastic waste contamination in oceans, due to packaging materials in general. Both these unfortunate events can be faced successfully if we introduce the biodegradable organic semiconductors, substrates and plastics.

Back in 2011 there were already crystalline OFETs with the mobility values exceeding those of amorphous silicon. Nevertheless, reaching values of field effect mobility in excess of 10 cm2/Vs remains a tremendous challenge for organic semiconductors and rather difficult to materialize at the same time. More often than not, organic electronic devices are fabricated with the “as received” materials carrying the declared purity by the chemical supplier. Nevertheless, when the effort of purification was invested, then the results improved impressively, with the recorded mobility of the organic semiconductor reaching record values in excess of 5 cm2/Vs for single crystal based OFETs with rubrene. Importantly also, time of flight measurements at low temperature of ultra-pure oligomeric systems of organic semiconductors showed that mobilities of 10 cm2/Vs at room temperature and of several hundred cm2/Vs at low temperatures are possible to achieve.

In this work, authors tackle the issue of materials’ purity and its influence on organic electronic devices systematically. They compared the effect of different materials as well as different purification degrees respectively, on the performance of fabricated devices. This is to demonstrate systematically the influence of this “purification versus performance” relationship. For this study a large pool of organic semiconductor materials, with n-, p-, and ambipolar-type of charge transport were investigated. The selected semiconductors for this study were: fullerene (C60), pentacene, copper phthalocyanine, indigo (vat blue 1), Tyrian purple, epindolidione, quinacridone and indanthrene blue RS (vat blue 4), the latter 5 molecules belonging to the group of hydrogen bonded (bio)-organic semiconductors.

Fig. 2: Molecular structure of the organic semiconductors used in this study: (from upper left to lower right) Fulleren C60, pentacene, copperphtalocyanine, indanthrene Blue RS, quinacridone, epindolidione, Tyrian purple (dibromoindigo) and indigo.

The method of purification of the organic semiconductors investigated in this study was the train sublimation method shown in Fig.3.

Fig. 3: Photograph of the train sublimation oven showing the sublimed material in the vacuum tube

As an example of the effect of purification take a look at the increase of field effect mobility by several order of magnitude by different purification steps using epindolidione.

Fig. 4: a) Comparison of OFET devices with three different purity grades of epindolidione semiconductor: unpurified (0X in graph legend), one time purified (1X in graph legend) and three times purified respectively (3X in graph legend); b) the Sqrt(Ids) vs. Vgs of the three purity grades presented in panel a)

Indeed, starting from very low field effect mobility of the “as received” material of 4.4×10-6 cm2/Vs, epindolidione based OFETs almost reached the mobility of 0.1 cm2/Vs after being subjected to three steps of purification. This tremendous mobility improvement was accompanied by a decrease of the subthreshold swing from 11.3 V/dec. to 1.9 V/dec. and an increase of the ON/OFF ratio from 3.5 to 3.5×104, literally a 10000-fold improvement.

 

Authors:

Çiğdem Yumuşak is postdoctoral researcher at the Linz Institute for Organic Solar Cells (LIOS) and Physical Chemistry at the Johannes Kepler University of Linz, Austria. She completed her BSc., MSc., and PhD degrees in Physics at the Yildiz Technical University, Istanbul, Turkey. Her scientific interests focus on semiconductor physics, bio-origin materials and their implementation into organic electronic devices, and bioelectronics.

 

Niyazi Serdar Sariciftci is Ordinarius Professor for Physical Chemistry and the Founding Director of the Linz Institute for Organic Solarcells (LIOS) at the Johannes Kepler University of Linz/Austria. He graduated as PhD in physics in Vienna. After postdoctoral study at the University of Stuttgart he joined the Institute for Polymers and Organic Solids at the University of California, Santa Barbara, USA.  Since 1996 he moved to Linz. He is the inventor of conjugated polymer and fullerene based “bulk heterojunction” solar cells. Prof. Sariciftci published over 600 publications and with over 75000 citations he is one of the most cited scientists in material science (2011, Thompson Reuter ranking No: 14 of the world in material science).  He is a corresponding member of the Academy of Science in Austria (ÖAW) and a member of the Turkish Academy of Sciences in.

 

Dr. Mihai Irimia-Vladu obtained his PhD from the Materials Engineering Department of Auburn University, Alabama, USA in August 2006, under the guidance of Prof. Jeffrey Fergus. He moved to Johannes Kepler University in Linz, Austria as a post-doctoral researcher in the groups of the late Prof. Siegfried Bauer (Soft Matter Physics) and Prof. Niyazi Serdar Sariciftci (Physical Chemistry) where he initiated research activity on biocompatible and biodegradable materials for electronics.  After an employment at the Department of Surface Technologies and Photonics of Joanneum Research mbH in Weiz, Austria, Dr. Mihai Irimia-Vladu is back at Johannes Kepler University Linz as Assistant Professor in the Department of Physical Chemistry, where he continues his research investigations of environmentally friendly materials for bioelectronics and energy harvesting devices development.

Article information:

Purity of Organic Semiconductors as a Key Factor for the Performance of Organic Electronic Devices
Cigdem Yumusak, Niyazi Serdar Sariciftci and Mihai Irimia-Vladu
Mater. Chem. Front., 2020, Accepted Manuscript
https://doi.org/10.1039/D0QM00690D

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Life science nanoarchitectonics at interfaces

By .

Nanotechnology is an indispensable item in advanced bio-related and life sciences, but a novel concept is necessary to bridge gaps between nanotechnology and biology/materials chemistry. The most suitable concept for this task would be nanoarchitectonics. In this short review article, our recent accomplishments of nanoarchitectonics approaches on cell functions including gene delivery and controlled differentiation are summarized. Regulations of cell activities by nanoarchitected materials are carried out through their interfacial contacts. Our accomplishments are here described according to types of material structural motif, (i) nanotopography, (ii) self-assembled structures, and (iii) composite materials. Finally, several challenging approaches are introduced as frontiers of cell fate regulation at the interfacial media. Developments of artificial materials and systems to regulate bio-organizations including living cells will give intuitions and ideas even to the design of general functional systems. Interfacial nanoarchitectonics could be an important key concept for future advanced life technologies as well as currently required biomedical applications.

 

Figure 1. Outline of nanoarchitectonics and application to life science at interfaces.

 

Interfacial structures with various topological and mechanical features affect significantly cell behaviours including cell fates. At insides of living cells, sophisticated mechanisms are working upon relays of functional elements, and these mechanisms can be triggered by the input of external stimuli at the surfaces of cells. Control of surface contact can lead to the regulation of complicated cell functions. Interfacial nanoarchitectonics would be an important key concept for cell regulations for biomedical applications and life sciences.

 

Article Information

Life science nanoarchitectonics at interfaces
Katsuhiko Ariga, Kun-Che Tsai, Lok Kumar Shrestha and Shan-hui Hsu
Mater. Chem. Front., 2020, Accepted Manuscript
https://doi.org/10.1039/D0QM00615G

 

Authors Information

Katsuhiko Ariga

National Institute for Materials Science & University of Tokyo

Katsuhiko Ariga received his Ph.D. from Tokyo Institute of Technology in 1990. He is currently the Leader of the Supermolecules Group and Principal Investigator at the World Premier International Research Centre for Materials Nanoarchitectonics, NIMS. He has also been appointed as Professor at the University of Tokyo. He is the author of more than 700 articles indexed by SCI and cited more than 40000 times with an index H = 106 (Sept., 2020)

https://publons.com/researcher/2767466/katsuhiko-ariga/

 

Shan-hui Hsu

National Taiwan University

Shan-hui Hsu received her Ph.D. degree from Case Western Reserve University (USA) in 1992. She is now the Director for the Doctoral Program of Green Sustainable Materials and Precision Devices and Distinguished Professor at the Institute of Polymer Science and Engineering, National Taiwan University.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Manganese as a Superior Dopant for Oxide Nanosheets in Water Oxidation

By .

The efficiency of water splitting is severely limited by the oxygen evolution reaction (OER), due to sluggish kinetics and a substantial overpotential. To overcome this challenge, precious-metal based catalysts, such as IrO2 and RuO2, have been investigated and confirmed to exhibit good OER performance. However, the scarcity and high cost of these materials restrict their large-scale application.

 

Recently, the group of Derek Ho and collaborators of the City University of Hong Kong have demonstrated a one-step method for the synthesis of Mn doped ultrathin nickel-iron oxide (Mn-Ni-Fe-O) nanosheets, which simultaneously achieves an abundance of oxygen vacancies and high valance Ni3+ catalytic sites (Fig. 1). The Mn dopant exists in the form of mixed-valence Mn cations, which contributes to tailoring the electronic structure of the Ni and Fe sites, leading to outstanding OER catalytic performance.

Figure 1. Schematic of the preparation procedure of Mn-Ni-Fe-O nanosheets.

 

 

SEM and TEM images of the Mn-Ni-Fe-O hybrid shows 100 – 300 nm interconnected nanosheet structures, having an ultrathin and veil-like morphology (Fig. 2). AFM images show a nanosheet thickness of approximately 3.2 nm. EDX mapping presents that Ni, Fe, Mn, and O elements are uniformly dispersed throughout the nanosheets.

 

Figure 2. (a) SEM image, (b, c) TEM images and the inset in (c) is the corresponding SAED patterns, (d) HRTEM image, (e) AFM image and the corresponding thickness curve, (f) STEM image and the corresponding element mapping, and (g) EDX spectrum of the Mn-Ni-Fe-O nanosheets.

 

 

XRD, XPS, CV, and EPR are also performed (Fig. 3). From XPS, after Mn doping, the Fe 2p3/2 XPS peak of the Mn-Ni-Fe-O nanosheets shifts to a higher binding energy as compared to that of undoped Ni-Fe-O nanosheets, suggesting that Mn dopant can modulate the charge density of Fe atom sites. Compared to the Ni 2p XPS spectrum of pristine Ni-Fe-O, the Ni 2p XPS spectrum of Mn-Ni-Fe-O nanosheets exhibits an obvious positive shift of 0.3 eV in binding energy, which is attributed to Mn incorporation. From CV curves, the Ni2+ oxidation peaks appear at 1.40 and 1.36 V versus RHE for the undoped and doped samples, respectively, indicating the oxidation of Ni species is enhanced upon Mn doping. Also, the O2 ratio (51.0 %) for the Mn-Ni-Fe-O nanosheets is higher than that of the Ni-Fe-O nanosheets (41.9 %), which indicates that Mn dopants can create an enhanced oxygen vacancies concentration.

Figure 3. Characterization data of the Mn-Ni-Fe-O and Ni-Fe-O: (a) XRD patterns, (b) XPS survey spectra, (c) high-resolution XPS spectra for Mn 2p region for Mn-Ni-Fe-O, (d) XPS for the Fe 2p region, (e) XPS for the Ni 2p region, CV curves (scan rate of 50 mV s-1) of (f) Ni-Fe-O  and (g) Mn-Ni-Fe-O, (h) XPS for the O 1s region, and (i) electron paramagnetic resonance (EPR) spectra of Mn-Ni-Fe-O (2 wt%).

 

 

OER electrochemical performance has been investigated in an O2-saturated KOH (1 M) solution. Upon doping of Mn, polarization curves show an OER overpotential of only 225 mV (vs. undoped at 250 mV) (Fig. 4). Remarkably, these two as-prepared ultrathin nanosheets, with or without Mn doping, exhibit faster OER than the commercial RuO2. The Mn doped nanosheets exhibit a turnover frequency (TOF) of 0.063 s−1 at the overpotential of 300 mV, which is 3.5 and 12 times higher than that of the undoped sample and commercial RuO2, respectively. The Tafel slope is 38.2 mV dec-1 (vs. 65.8 mV dec-1 undoped and 72.0 mV dec-1 from RuO2). Electrochemical impedance spectroscopy (EIS) reveals that the Mn dopants can effectively improve the electrical conductivity.

Figure 4. (a) Polarization curves, (b) TOF, and (c) Tafel slope of Mn-Ni-Fe-O, Ni-Fe-O, and RuO2. (d) Nyquist slopes of Ni-Fe-O and Mn-Ni-Fe-O, (e) overpotential at 10 mA cm-2 and Tafel slope of Ni-Fe-O nanosheets with different Mn doping levels, and (f) chronopotentiometry curves of Mn-Ni-Fe-O nanosheets at 30 mA cm-2.

 

 

This work demonstrated a facile method in synthesizing ultrathin Mn-Ni-Fe-O nanosheets that achieve highly efficient OER catalytic performance, providing a sound strategy for the design and synthesis of multi-metallic, atomically-thin oxides nanosheets to mitigate the catalytic limitation of OER, thereby rendering the electrolysis of water a practical form of alternative fuel production.

 

Information on Corresponding Author

 

Derek Ho

City University of Hong Kong

Derek Ho is currently an associate professor at the Department of Materials Science and Engineering at City University of Hong Kong. He directs the Atoms to Systems Laboratory. He received his B.A.Sc. (first class) and M.A.Sc. in Electrical and Computer Engineering from the University of British Columbia (UBC), Vancouver, Canada, in 2005 and 2007 respectively. At UBC, he focused his study on microelectronics. He received his Ph.D. in Electrical and Computer Engineering from the University of Toronto, Toronto, Canada in 2013, where he worked on sensors incorporating nanomaterials and CMOS electronics for chemical detection and DNA biosensing applications. Professor Ho’s research interest is in the synthesis of electronic nanomaterials and fabrication of advanced devices. His current research focuses on sensing and energy applications, mainly in the form of stretchable and healable electronics. www.atomstosystems.com

 

Article information:

Mn dopant induced high-valence Ni3+ sites and oxygen vacancies for enhanced water oxidation

Yu Zhang, Zhiyuan Zeng and Derek Ho

Mater. Chem. Front., 2020, Advance Article

https://doi.org/10.1039/D0QM00300J

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Lithium-based Batteries – A collection of articles from Materials Chemistry Frontiers

By .

We are delighted to share with you a collection of articles from Materials Chemistry Frontiers to showcase the exciting and recent developments in the field of Lithium-Based Batteries, including lithium-ion batteries, lithium-sulphur batteries and lithium-air batteries. This collection is free to access till July 19th 2020 .

Reviews


A new generation of energy storage electrode materials constructed from carbon dots
Ji-Shi Wei, Tian-Bing Song, Peng Zhang, Xiao-Qing Niu, Xiao-Bo Chen and Huan-Ming Xiong
Mater. Chem. Front., 2020,4, 729-749
https://doi.org/10.1039/C9QM00554D

Three-dimensional porous carbon materials and their composites as electrodes for electrochemical energy storage systems
Xiaoyang Deng, Jiajun Li, Liying Ma, Junwei Sha and Naiqin Zhao
Mater. Chem. Front., 2019,3, 2221-2245
https://doi.org/10.1039/C9QM00425D

Antimony-based materials as promising anodes for rechargeable lithium-ion and sodium-ion batteries
Jun He, Yaqing Wei, Tianyou Zhai and Huiqiao Li
Mater. Chem. Front., 2018,2, 437-455
https://doi.org/10.1039/C7QM00480J

Recent progress in Zn-based anodes for advanced lithium ion batteries
Lei Wang, Guanhua Zhang, Quanhui Liu and Huigao Duan
Mater. Chem. Front., 2018,2, 1414-1435
https://doi.org/10.1039/C8QM00125A

Multifunctional second barrier layers for lithium–sulfur batteries
Wei Fan, Longsheng Zhang and Tianxi Liu
Mater. Chem. Front., 2018,2, 235-252
https://doi.org/10.1039/C7QM00405B

Research articles


Multifunctional ultrasmall-MoS2/graphene composites for high sulfur loading Li–S batteries
Tianyu Tang, Teng Zhang, Lina Zhao, Biao Zhang, Wei Li, Junjie Xu, Long Zhang, Hailong Qiu and Yanglong Hou
Mater. Chem. Front., 2020,4, 1483-1491
https://doi.org/10.1039/D0QM00082E

Cationic covalent organic framework based all-solid-state electrolytes
Zhen Li, Zhi-Wei Liu, Zhen-Jie Mu, Chen Cao, Zeyu Li, Tian-Xiong Wang, Yu Li, Xuesong Ding, Bao-Hang Han and Wei Feng
Mater. Chem. Front., 2020,4, 1164-1173
https://doi.org/10.1039/C9QM00781D

The journey of lithium ions in the lattice of PNb9O25
Haoxiang Yu, Jundong Zhang, Runtian Zheng, Tingting Liu, Na Peng, Yu Yuan, Yufei Liu, Jie Shu and Zhen-Bo Wang
Mater. Chem. Front., 2020,4, 631-637
https://doi.org/10.1039/C9QM00694J

The suppression of lithium dendrites by a triazine-based porous organic polymer-laden PEO-based electrolyte and its application for all-solid-state lithium batteries
N. Angulakshmi, R. Baby Dhanalakshmi, Murugavel Kathiresan, Yingke Zhou and A. Manuel Stephan
Mater. Chem. Front., 2020,4, 933-940
https://doi.org/10.1039/C9QM00707E

A novel ordered hollow spherical nickel silicate–nickel hydroxide composite with two types of morphologies for enhanced electrochemical storage performance
Qiushi Wang, Yifu Zhang, Jinqiu Xiao, Hanmei Jiang, Xiaojuan Li and Changgong Meng
Mater. Chem. Front., 2019,3, 2090-2101
https://doi.org/10.1039/C9QM00392D

Ultrafine MoO3 nanoparticles embedded in porous carbon nanofibers as anodes for high-performance lithium-ion batteries
Xiu Liu, Yuan Liu, Xiaodong Yan, Jin-Le Lan, Yunhua Yu and Xiaoping Yang
Mater. Chem. Front., 2019,3, 120-126
https://doi.org/10.1039/C8QM00497H

3D hollow reduced graphene oxide foam as a stable host for high-capacity lithium metal anodes
Pengcheng Yao, Qiyuan Chen, Yu Mu, Jie Liang, Xiuqiang Li, Xin Liu, Yang Wang, Bin Zhu and Jia Zhu
Mater. Chem. Front., 2019,3, 339-343
https://doi.org/10.1039/C8QM00499D

V2(PO4)O/C@CNT hollow spheres with a core–shell structure as a high performance anode material for lithium-ion batteries
Bin Xiao, Wen-hai Zhang, Hai-feng Xia, Zhi-teng Wang, Lin-bo Tang, Chang-sheng An, Zhen-jiang He, Hui Tong and Jun-chao Zheng
Mater. Chem. Front., 2019,3, 456-463
https://doi.org/10.1039/C8QM00619A

Graphene-based Fe-coordinated framework porphyrin as an interlayer for lithium–sulfur batteries
Jin-Lei Qin, Bo-Quan Li, Jia-Qi Huang, Long Kong, Xiang Chen, Hong-Jie Peng, Jin Xie, Ruiping Liu and Qiang Zhang
Mater. Chem. Front., 2019,3, 615-619
https://doi.org/10.1039/C8QM00645H

A 2D/2D graphitic carbon nitride/N-doped graphene hybrid as an effective polysulfide mediator in lithium–sulfur batteries
Junsheng Ma, Mingpeng Yu, Huanyu Ye, Hongquan Song, Dongxue Wang, Yanting Zhao, Wei Gong and Hong Qiu
Mater. Chem. Front., 2019,3, 1807-1815
https://doi.org/10.1039/C9QM00228F

A sandwich-type sulfur cathode based on multifunctional ceria hollow spheres for high-performance lithium–sulfur batteries
Jianwei Wang, Bo Zhou, Hongyang Zhao, Miaomiao Wu, Yaodong Yang, Xiaolei Sun, Donghai Wang and Yaping Du
Mater. Chem. Front., 2019,3, 1317-1322
https://doi.org/10.1039/C9QM00024K

Synthesis and thermodynamic investigation of MnO nanoparticle anchored N-doped porous carbon as the anode for Li-ion and Na-ion batteries
Ya-Nan Sun, Liangtao Yang, Zhu-Yin Sui, Li Zhao, Mustafa Goktas, Hang-Yu Zhou, Pei-Wen Xiao, Philipp Adelhelm and Bao-Hang Han
Mater. Chem. Front., 2019,3, 2728-2737
https://doi.org/10.1039/C9QM00599D

An insight into the pyrolysis process of metal–organic framework templates/precursors to construct metal oxide anode materials for lithium-ion batteries
Ang Li, Binbin Qian, Ming Zhong, Yingying Liu, Ze Chang and Xian-He Bu
Mater. Chem. Front., 2019,3, 1398-1405
https://doi.org/10.1039/C9QM00098D

Li4Ti5O12 quantum dot decorated carbon frameworks from carbon dots for fast lithium ion storage
Lin Li, Xinnan Jia, Yu Zhang, Tianyun Qiu, Wanwan Hong, Yunling Jiang, Guoqiang Zou, Hongshuai Hou, Xianchun Chen and Xiaobo Ji
Mater. Chem. Front., 2019,3, 1761-1767
https://doi.org/10.1039/C9QM00259F

A general low-temperature synthesis route to polyanionic vanadium phosphate fluoride cathode materials: AVPO4F (A = Li, Na, K) and Na3V2(PO4)2F3
Nicolas Goubard-Bretesché, Erhard Kemnitz and Nicola Pinna
Mater. Chem. Front., 2019,3, 2164-2174
https://doi.org/10.1039/C9QM00325H

Revisiting and improving the preparation of silicon-based electrodes for lithium-ion batteries: ball milling impact on poly(acrylic acid) polymer binders
Thibaut Chartrel, Mariama Ndour, Véronique Bonnet, Sébastien Cavalaglio, Luc Aymard, Franck Dolhem, Laure Monconduit and Jean-Pierre Bonnet
Mater. Chem. Front., 2019,3, 881-891
https://doi.org/10.1039/C8QM00660A

Arranged redistribution of sulfur species and synergistic mediation of polysulfide conversion in lithium–sulfur batteries by a cactus structure MnO2/carbon nanofiber interlayer
Zhihao Yu, Tianji Gao, TrungHieu Le, Jie Cheng and Ying Yang
Mater. Chem. Front., 2019,3, 948-954
https://doi.org/10.1039/C9QM00022D

Silicon nanoparticle-sandwiched ultrathin MoS2–graphene layers as an anode material for Li-ion batteries
Ujjwala V. Kawade, Anuradha A. Ambalkar, Rajendra P. Panmand, Ramchandra S. Kalubarme, Sunil R. Kadam, Sonali D. Naik, Milind V. Kulkarni and Bharat B. Kale
Mater. Chem. Front., 2019,3, 587-596
https://doi.org/10.1039/C8QM00568K

The formation of yolk–shell structured NiO nanospheres with enhanced lithium storage capacity
Jian Wang, Panpan Su, Jing Zhang, Fangfang Wang, Yali Chen, Hao Liu and Jian Liu
Mater. Chem. Front., 2019,3, 1619-1625
https://doi.org/10.1039/C9QM00328B

Electric field effect in a Co3O4/TiO2 p–n junction for superior lithium-ion storage
Huabin Kong, Chunshuang Yan, Chade Lv, Jian Pei and Gang Chen
Mater. Chem. Front., 2019,3, 909-915
https://doi.org/10.1039/C9QM00007K

A novel lithium-ion hybrid capacitor based on an aerogel-like MXene wrapped Fe2O3 nanosphere anode and a 3D nitrogen sulphur dual-doped porous carbon cathode
Xiao Tang, Hao Liu, Xin Guo, Shijian Wang, Wenjian Wu, Anjon Kumar Mondal, Chengyin Wang and Guoxiu Wang
Mater. Chem. Front., 2018,2, 1811-1821
https://doi.org/10.1039/C8QM00232K

In situ synthesis of Cu2O–CuO–C supported on copper foam as a superior binder-free anode for long-cycle lithium-ion batteries
Xiaoming Lin, Jia Lin, Jiliang Niu, Jinji Lan, R. Chenna Krishna Reddy, Yuepeng Cai, Jincheng Liu and Gang Zhang
Mater. Chem. Front., 2018,2, 2254-2262
https://doi.org/10.1039/C8QM00366A

Fe/Fe3C@graphitic carbon shell embedded in carbon nanotubes derived from Prussian blue as cathodes for Li–O2 batteries
Yanqing Lai, Yifeng Jiao, Junxiao Song, Kai Zhang, Jie Li and Zhian Zhang
Mater. Chem. Front., 2018,2, 376-384
https://doi.org/10.1039/C7QM00503B

A novel hierarchical precursor of densely integrated hydroxide nanoflakes on oxide microspheres toward high-performance layered Ni-rich cathode for lithium ion batteries
Yan Li, Xinhai Li, Zhixing Wang, Huajun Guo, Tao Li, Kui Meng and Jiexi Wang
Mater. Chem. Front., 2018,2, 1822-1828
https://doi.org/10.1039/C8QM00326B

In situ TEM study of lithiation into a PPy coated α-MnO2/graphene foam freestanding electrode
Mohammad Akbari Garakani, Sara Abouali, Jiang Cui and Jang-Kyo Kim
Mater. Chem. Front., 2018,2, 1481-1488
https://doi.org/10.1039/C8QM00153G

Directionally assembled MoS2 with significantly expanded interlayer spacing: a superior anode material for high-rate lithium-ion batteries
Qilin Wei, Min-Rui Gao, Yan Li, Dongtang Zhang, Siyu Wu, Zonghai Chen and Yugang Sun
Mater. Chem. Front., 2018,2, 1441-1448
https://doi.org/10.1039/C8QM00117K

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Recent research on perovskites for optoelectronics – A collection of articles from Frontiers Journals

By .

We are delighted to share with you a collection of articles from Materials Chemistry Frontiers and Inorganic Chemistry Frontiers to showcase the exciting and recent developments in the field of perovskites for optoelectronic applications, such as perovskite solar cells and photodetectors. This collection is free to access till the 06-July.

 

All-inorganic lead-free perovskites for optoelectronic applications
Xingtao Wang, Taiyang Zhang, Yongbing Lou and Yixin Zhao
Mater. Chem. Front., 2019,3, 365-375
https://doi.org/10.1039/C8QM00611C

 

Arranging strategies for A-site cations: impact on the stability and carrier migration of hybrid perovskite materials
Wei Jian, Ran Jia, Hong-Xing Zhang and Fu-Quan Bai
Inorg. Chem. Front., 2020,7, 1741-1749
https://doi.org/10.1039/D0QI00102C

 

Trap passivation and efficiency improvement of perovskite solar cells by a guanidinium additive
Jiaxu Yao, Hui Wang, Pang Wang, Robert S. Gurney, Akarin Intaniwet, Pipat Ruankham, Supab Choopun, Dan Liu and Tao Wang
Mater. Chem. Front., 2019,3, 1357-1364
https://doi.org/10.1039/C9QM00112C

 

Highly oriented two-dimensional formamidinium lead iodide perovskites with a small bandgap of 1.51 eV
Jielin Yan, Weifei Fu, Xinqian Zhang, Jiehuan Chen, Weitao Yang, Weiming Qiu, Gang Wu, Feng Liu, Paul Heremans and Hongzheng Chen
Mater. Chem. Front., 2018,2, 121-128
https://doi.org/10.1039/C7QM00472A

 

Facile fabrication of perovskite layers with large grains through a solvent exchange approach
Ying-Ke Ren, Xiao-Qiang Shi, Xi-Hong Ding, Jun Zhu, Tasawar Hayat, Ahmed Alsaedi, Zhao-Qian Li, Xiao-Xiao Xu, Shang-Feng Yang and Song-Yuan Dai
Inorg. Chem. Front., 2018,5, 348-353
https://doi.org/10.1039/C7QI00685C

 

Organic hole-transporting materials for 9.32%-efficiency and stable CsPbBr3 perovskite solar cells
Yuanyuan Zhao, Tianshu Liu, Fumeng Ren, Jialong Duan, Yudi Wang, Xiya Yang, Qinghua Li and Qunwei Tang
Mater. Chem. Front., 2018,2, 2239-2244
https://doi.org/10.1039/C8QM00337H

 

Cs1−xRbxSnI3 light harvesting semiconductors for perovskite photovoltaics
Kenneth P. Marshall, Shuxia Tao, Marc Walker, Daniel S. Cook, James Lloyd-Hughes, Silvia Varagnolo, Anjana Wijesekara, David Walker, Richard I. Walton and Ross A. Hatton
Mater. Chem. Front., 2018,2, 1515-1522
https://doi.org/10.1039/C8QM00159F

 

Improving the moisture stability of perovskite solar cells by using PMMA/P3HT based hole-transport layers
Soumya Kundu and Timothy L. Kelly
Mater. Chem. Front., 2018,2, 81-89
https://doi.org/10.1039/C7QM00396J

 

CsAg2Sb2I9 solar cells
Zhimin Fang, Shizhe Wang, Shangfeng Yang and Liming Ding
Inorg. Chem. Front., 2018,5, 1690-1693
https://doi.org/10.1039/C8QI00309B

 

A broad-spectral-response perovskite photodetector with a high on/off ratio and high detectivity
Xiaohui Yi, Yisen Wang, Ningli Chen, Zhiwei Huang, Zhenwei Ren, Hui Li, Tao Lin, Cheng Li and Jizheng Wang
Mater. Chem. Front., 2018,2, 1847-1852
https://doi.org/10.1039/C8QM00303C

 

The effect of SrI2 substitution on perovskite film formation and its photovoltaic properties via two different deposition methods
Huanyu Zhang, Rui Li, Mei Zhang and Min Guo
Inorg. Chem. Front., 2018,5, 1354-1364
https://doi.org/10.1039/C8QI00131F

 

Hole-transporting materials based on thiophene-fused arenes from sulfur-mediated thienannulations
Hsing-An Lin, Nobuhiko Mitoma, Lingkui Meng, Yasutomo Segawa, Atsushi Wakamiya and Kenichiro Itami
Mater. Chem. Front., 2018,2, 275-280
https://doi.org/10.1039/C7QM00473G

 

Environmentally friendly, aqueous processed ZnO as an efficient electron transport layer for low temperature processed metal–halide perovskite photovoltaics
Jiaqi Zhang, Maurizio Morbidoni, Keke Huang, Shouhua Feng and Martyn A. McLachlan
Inorg. Chem. Front., 2018,5, 84-89
https://doi.org/10.1039/C7QI00667E

 

A chemical sensor for CBr4 based on quasi-2D and 3D hybrid organic–inorganic perovskites immobilized on TiO2 films
Pavlos Nikolaou, Anastasia Vassilakopoulou, Dionysios Papadatos, Emmanuel Topoglidis and Ioannis Koutselas
Mater. Chem. Front., 2018,2, 730-740
https://doi.org/10.1039/C7QM00550D

 

A cascade-type electron extraction design for efficient low-bandgap perovskite solar cells based on a conventional structure with suppressed open-circuit voltage loss
Meiyue Liu, Ziming Chen, Zhen Chen, Hin-Lap Yip and Yong Cao
Mater. Chem. Front., 2019,3, 496-504
https://doi.org/10.1039/C8QM00620B

 

A potassium thiocyanate additive for hysteresis elimination in highly efficient perovskite solar cells
Ruxiao Zhang, Minghua Li, Yahuan Huan, Jiahao Xi, Suicai Zhang, Xiaoqin Cheng, Hailin Wu, Wencai Peng, Zhiming Bai and Xiaoqin Yan
Inorg. Chem. Front., 2019,6, 434-442
https://doi.org/10.1039/C8QI01020J

 

Performance enhancement in up-conversion nanoparticle-embedded perovskite solar cells by harvesting near-infrared sunlight
Dongyu Ma, Yingli Shen, Tongtong Su, Juan Zhao, Naveed Ur Rahman, Zongliang Xie, Feng Shi, Shizhao Zheng, Yi Zhang and Zhenguo Chi
Mater. Chem. Front., 2019,3, 2058-2065
https://doi.org/10.1039/C9QM00311H

 

Molecular doping of CuSCN for hole transporting layers in inverted-type planar perovskite solar cells
In Su Jin, Ju Ho Lee, Young Wook Noh, Sang Hyun Park and Jae Woong Jung
Inorg. Chem. Front., 2019,6, 2158-2166
https://doi.org/10.1039/C9QI00557A

 

CsPbI2.69Br0.31 solar cells from low-temperature fabrication
Shizhe Wang, Yong Hua, Mingkui Wang, Fangyang Liu and Liming Ding
Mater. Chem. Front., 2019,3, 1139-1142
https://doi.org/10.1039/C9QM00168A

 

(1,4-Butyldiammonium)CdBr4: a layered organic–inorganic hybrid perovskite with a visible-blind ultraviolet photoelectric response
Yuyin Wang, Chengmin Ji, Xitao Liu, Shiguo Han, Jing Zhang, Zhihua Sun, Asma Khan and Junhua Luo
Inorg. Chem. Front., 2018,5, 2450-2455
https://doi.org/10.1039/C8QI00551F

 

Electronic properties of tin iodide hybrid perovskites: effect of indium doping
Keisuke Kobayashi, Hiroyuki Hasegawa, Yukihiro Takahashi, Jun Harada and Tamotsu Inabe
Mater. Chem. Front., 2018,2, 1291-1295
https://doi.org/10.1039/C7QM00587C

 

Bilayer chlorophyll derivatives as efficient hole-transporting layers for perovskite solar cells
Na Li, Chunxiang Dall’Agnese, Wenjie Zhao, Shengnan Duan, Gang Chen, Shin-ichi Sasaki, Hitoshi Tamiaki, Yoshitaka Sanehira, Tsutomu Miyasaka and Xiao-Feng Wang
Mater. Chem. Front., 2019,3, 2357-2362
https://doi.org/10.1039/C9QM00377K

 

Step-efficient access to new starburst hole-transport materials with carbazole end-groups for perovskite solar cells via direct C–H/C–Br coupling reactions
Yu-Chieh Chang, Kun-Mu Lee, Chang-Chieh Ting and Ching-Yuan Liu
Mater. Chem. Front., 2019,3, 2041-2045
https://doi.org/10.1039/C9QM00309F

 

High-performance carbon-based perovskite solar cells through the dual role of PC61BM
Weili Fan, Zhe Wei, Zhenyun Zhang, Fazheng Qiu, Chaosheng Hu, Zhichao Li, Minxuan Xu and Junjie Qi
Inorg. Chem. Front., 2019,6, 2767-2775
https://doi.org/10.1039/C9QI00693A

 

Efficient inverted perovskite solar cells with truxene-bridged PDI trimers as electron transporting materials
Rui Wang, Kui Jiang, Han Yu, Fei Wu, Linna Zhu and He Yan
Mater. Chem. Front., 2019,3, 2137-2142
https://doi.org/10.1039/C9QM00329K

 

N-Methyl-2-pyrrolidone as an excellent coordinative additive with a wide operating range for fabricating high-quality perovskite films
Fangwen Cheng, Xiaojing Jing, Ruihao Chen, Jing Cao, Juanzhu Yan, Youyunqi Wu, Xiaofeng Huang, Binghui Wu and Nanfeng Zheng
Inorg. Chem. Front., 2019,6, 2458-2463
https://doi.org/10.1039/C9QI00547A

 

Groove-assisted solution growth of lead bromide perovskite aligned nanowires: a simple method towards photoluminescent materials with guiding light properties
Isabelle Rodriguez, Roberto Fenollosa, Fernando Ramiro-Manzano, Rocío García-Aboal, Pedro Atienzar and Francisco J. Meseguer
Mater. Chem. Front., 2019,3, 1754-1760
https://doi.org/10.1039/C9QM00210C

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)